3D-printed immunosensor for the diagnosis of Parkinson?s disease

被引:36
作者
Kalinke, Cristiane [1 ,3 ]
De Oliveira, Paulo Roberto [2 ,3 ]
Banks, Craig E. [3 ]
Janegitz, Bruno Campos [2 ]
Bonacin, Juliano Alves [1 ]
机构
[1] Univ Campinas UNICAMP, Inst Chem, BR-13083859 Campinas, SP, Brazil
[2] Fed Univ Sao Carlos UFSCar, Dept Nat Sci Math & Educ, BR-13600970 Araras, SP, Brazil
[3] Manchester Metropolitan Univ, Fac Sci & Engn, Manchester M1 5GD, England
基金
巴西圣保罗研究基金会;
关键词
Immunosensor; Graphene; PARK7; DJ-1; protein; Early diagnosis; Parkinson?s disease; 3D-printing; GRAPHENE ELECTRODES; CEREBROSPINAL-FLUID; DJ-1; COMPOSITES; OXIDATION; DEVICE; CELLS;
D O I
10.1016/j.snb.2023.133353
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
3D printing technology is a strategic tool for the development of electrochemical sensors and biosensors since it is possible to obtain versatile devices quickly and at a low cost. In this work, an arrangement of 3D-printed electrodes (working, pseudo-reference, and auxiliary) was applied for the detection of PARK7/DJ-1 protein in blood serum and cerebrospinal fluid samples. The immunosensor surface was previously chemically and elec-trochemically activated to promote the increase of the active sites and the conductivity, allowing the covalent immobilization of the biological species (antibodies) and improving its electrochemical performance. The detection was carried out by impedimetric (5.0-200 mu g L-1), and voltammetric measurements (5.0-500 mu g L-1), showing limits of detection of 1.01 and 3.46 mu g L-1. The 3D-printed immunosensor also achieved good repeatability and reproducibility from normal to abnormal levels of PARK7/DJ-1 protein, aiming for the diag-nosis of Parkinson's disease in different stages of the disease.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Epoxidized natural rubber toughened polylactic acid/talc composites: Mechanical, thermal, and morphological properties [J].
Akbari, Abozar ;
Jawaid, M. ;
Hassan, Azman ;
Balakrishnan, Harintharavimal .
JOURNAL OF COMPOSITE MATERIALS, 2014, 48 (07) :769-781
[2]  
Bhaiyya M, 2022, IEEE INT SYM MED MEA, DOI [10.1109/MEMEA54994.2022.9856548, 10.1109/MeMeA54994.2022.9856548]
[3]   Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer [J].
Blaik, Rita A. ;
Lan, Esther ;
Huang, Yu ;
Dunn, Bruce .
ACS NANO, 2016, 10 (01) :324-332
[4]  
Cardoso R.M., SENSOR ACTUAT B-CHEM
[5]   Additive-manufactured (3D-printed) electrochemical sensors: A critical review [J].
Cardoso, Rafael M. ;
Kalinke, Cristiane ;
Rocha, Raquel G. ;
dos Santos, Pamyla L. ;
Rocha, Diego P. ;
Oliveira, Paulo R. ;
Janegitz, Bruno C. ;
Bonacin, Juliano A. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2020, 1118 :73-91
[6]   3D-printed flexible device combining sampling and detection of explosives [J].
Cardoso, Rafael M. ;
Castro, Silvia V. F. ;
Silva, Murilo N. T. ;
Lima, Ana P. ;
Santana, Mario H. P. ;
Nossol, Edson ;
Silva, Rodrigo A. B. ;
Richter, Eduardo M. ;
Paixao, Thiago R. L. C. ;
Munoz, Rodrigo A. A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 292 :308-313
[7]   The Role of Oxidative Stress in Parkinson's Disease [J].
Chang, Kuo-Hsuan ;
Chen, Chiung-Mei .
ANTIOXIDANTS, 2020, 9 (07) :1-32
[8]  
Crapnell R.D., 2021, ACS MEASUREMENT SCI
[9]   Toward the Rapid Diagnosis of Sepsis: Detecting Interleukin-6 in Blood Plasma Using Functionalized Screen-Printed Electrodes with a Thermal Detection Methodology [J].
Crapnell, Robert D. ;
Jesadabundit, Whitchuta ;
Ferrari, Alejandro Garcia-Miranda ;
Dempsey-Hibbert, Nina C. ;
Peeters, Marloes ;
Tridente, Ascanio ;
Chailapakul, Orawon ;
Banks, Craig E. .
ANALYTICAL CHEMISTRY, 2021, 93 (14) :5931-5938
[10]   Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2) [J].
Damiati, Samar ;
Kupcu, Seta ;
Peacock, Martin ;
Eilenberger, Christoph ;
Zamzami, Mazin ;
Qadri, Ishtiaq ;
Choudhry, Hani ;
Sleytr, Uwe B. ;
Schuster, Bernhard .
BIOSENSORS & BIOELECTRONICS, 2017, 94 :500-506