Approximation by Sza<acute accent>sz-integral type operators

被引:0
作者
Kajla, Arun [1 ]
Berwal, Sahil [1 ]
Sehrawat, Priya [1 ]
机构
[1] Cent Univ Haryana, Dept Math, Mahendragarh 123031, Haryana, India
关键词
Beta operators; Steklov mean; FAMILY; CONVERGENCE;
D O I
10.2298/FIL2404317K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a summation-integral type operators and establish a quantitative Voronovskaja type theorem and weighted approximation for these operators. Finally, we calculate the rate of convergence for absolutely continuous functions whose derivative is equivalent to a function with bounded variation.
引用
收藏
页码:1317 / 1327
页数:11
相关论文
共 30 条
[1]   Asymptotic Formulas for Generalized Szasz-Mirakyan Operators [J].
Acar, Tuncer .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 :233-239
[2]   Some Functionals and Approximation Operators Associated with a Family of Discrete Probability Distributions [J].
Acu, Ana Maria ;
Rasa, Ioan ;
Srivastava, Hari M. .
MATHEMATICS, 2023, 11 (04)
[3]   Direct Results for Certain Summation-Integral Type Baskakov-Szasz Operators [J].
Acu, Ana Maria ;
Gupta, Vijay .
RESULTS IN MATHEMATICS, 2017, 72 (03) :1161-1180
[4]  
[Anonymous], 2008, Creative Math. Inf.
[5]   Some weighted statistical convergence and associated Korovkin and Voronovskaya type theorems [J].
Braha, Naim L. ;
Srivastava, H. M. ;
Et, Mikail .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 65 (1-2) :429-450
[6]   A Parametric Generalization of the Baskakov-Schurer-Szasz-Stancu Approximation Operators [J].
Braha, Naim Latif ;
Mansour, Toufik ;
Srivastava, Hari Mohan .
SYMMETRY-BASEL, 2021, 13 (06)
[7]  
Gadjiev AG., 1976, MAT ZAMETKI, V20, P781, DOI DOI 10.1016/J.JMAA.2006.04.070
[8]   Blending-type approximation by generalized Lupa-Durrmeyer-type operators [J].
Goyal, Meenu ;
Kajla, Arun .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (03) :551-566
[9]   Quantitative convergence results for a family of hybrid operators [J].
Goyal, Meenu ;
Gupta, Vijay ;
Agrawal, P. N. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :893-904
[10]  
Gupta V., 2014, Convergence estimates in approximation theory