Cauchy matrix structure and solutions of the spin-1 Gross-Pitaevskii equations

被引:3
|
作者
Li, Shangshuai [1 ,2 ]
Zhang, Da-jun [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 129卷
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensate; Gross-Pitaevskii equation; Nonlinear Schrodinger equation; Cauchy matrix approach; Nonlocal integrable system; BOSE-EINSTEIN CONDENSATION; INTEGRABLE EQUATIONS; SYLVESTER EQUATION; VORTEX; GAS;
D O I
10.1016/j.cnsns.2023.107705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy matrix structure of the spin-1 Gross-Pitaevskii (GP) equations. By utilizing the Cauchy matrix approach, we derive a 2 x 2 matrix nonlinear Schrodinger (NLS) equation, which serves as an unreduced model for the spin-1 BEC system and allows solutions with explicit formulae. Then we provide suitable constraints which lead to reductions for obtaining the classical and nonlocal spin-1 GP equations and their solutions. Some obtained solutions, including one-soliton solution, two-soliton solution and double-pole solution, are analyzed and illustrated.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Dynamics of breakup of multiple vortices in Gross-Pitaevskii equations of superfluids
    Jonsson, B. L. G.
    Ovchinnikov, Yu. N.
    Sigal, I. M.
    Ting, F. S. T.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
  • [22] Profiles of blow-up solutions for the Gross-Pitaevskii equation
    Shi-hui Zhu
    Jian Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 597 - 606
  • [23] Analytical Solutions for the Two-Dimensional Gross-Pitaevskii Equation with a Harmonic Trap
    Shi Yu-Ren
    Wang Xue-Ling
    Wang Guang-Hui
    Liu Cong-Bo
    Yang Hong-Juan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (03) : 273 - 278
  • [24] Analytical Solutions to the Time-Independent Gross-Pitaevskii Equation with a Harmonic Trap
    Shi Yu-Ren
    Wang Guang-Hui
    Liu Cong-Bo
    Zhou Zhi-Gang
    Yang Hong-Juan
    CHINESE PHYSICS LETTERS, 2012, 29 (11)
  • [25] Stability analysis and continuation for the coupled Gross-Pitaevskii equations
    Sriburadet, Sirilak
    Shih, Yin-Tzer
    Chien, C. -S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (03) : 807 - 826
  • [26] EFFICIENT TIME INTEGRATION METHODS FOR GROSS-PITAEVSKII EQUATIONS WITH ROTATION TERM
    Bader, Philipp
    Blanes, Sergio
    Casas, Fernando
    Thalhammer, Mechthild
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 147 - 169
  • [27] GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations
    Antoine, Xavier
    Duboscq, Romain
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 193 : 95 - 117
  • [28] Solutions of the Gross-Pitaevskii Equation in Prolate Spheroidal Coordinates
    Borisov, A. V.
    Shapovalov, A. V.
    RUSSIAN PHYSICS JOURNAL, 2015, 57 (09) : 1201 - 1209
  • [29] Global Behavior of Solutions to Generalized Gross-Pitaevskii Equation
    Masaki, Satoshi
    Miyazaki, Hayato
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (03) : 743 - 761
  • [30] GLOBAL SOLUTIONS FOR 3D NONLOCAL GROSS-PITAEVSKII EQUATIONS WITH ROUGH DATA
    Pecher, Hartmut
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,