Cauchy matrix structure and solutions of the spin-1 Gross-Pitaevskii equations

被引:3
|
作者
Li, Shangshuai [1 ,2 ]
Zhang, Da-jun [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 129卷
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensate; Gross-Pitaevskii equation; Nonlinear Schrodinger equation; Cauchy matrix approach; Nonlocal integrable system; BOSE-EINSTEIN CONDENSATION; INTEGRABLE EQUATIONS; SYLVESTER EQUATION; VORTEX; GAS;
D O I
10.1016/j.cnsns.2023.107705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy matrix structure of the spin-1 Gross-Pitaevskii (GP) equations. By utilizing the Cauchy matrix approach, we derive a 2 x 2 matrix nonlinear Schrodinger (NLS) equation, which serves as an unreduced model for the spin-1 BEC system and allows solutions with explicit formulae. Then we provide suitable constraints which lead to reductions for obtaining the classical and nonlocal spin-1 GP equations and their solutions. Some obtained solutions, including one-soliton solution, two-soliton solution and double-pole solution, are analyzed and illustrated.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Long-Time Asymptotics for the Spin-1 Gross-Pitaevskii Equation
    Geng, Xianguo
    Wang, Kedong
    Chen, Mingming
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 585 - 611
  • [2] Exactly solvable Gross-Pitaevskii type equations
    Liu, Yuan-Yuan
    Li, Wen-Du
    Dai, Wu-Sheng
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (01): : 1 - 11
  • [3] Conserved Gross-Pitaevskii equations with a parabolic potential
    Liu, Shi-min
    Zhang, Da-jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (10)
  • [4] On the Cauchy problem for Gross-Pitaevskii hierarchies
    Chen, Zeqian
    Liu, Chuangye
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
  • [5] The Cauchy problem for the Gross-Pitaevskii equation
    Gerard, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 765 - 779
  • [6] A unifying computational framework for fractional Gross-Pitaevskii equations
    Veeresha, P.
    Baleanu, Dumitru
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [7] GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions
    Antoine, Xavier
    Duboscq, Romain
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (11) : 2969 - 2991
  • [8] OPTIMAL BILINEAR CONTROL OF GROSS-PITAEVSKII EQUATIONS
    Hintermueller, Michael
    Marahrens, Daniel
    Markowich, Peter A.
    Sparber, Christof
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) : 2509 - 2543
  • [9] Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations
    Antoine, Xavier
    Bao, Weizhu
    Besse, Christophe
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) : 2621 - 2633
  • [10] ON THE CAUCHY PROBLEM FOR FOCUSING AND DEFOCUSING GROSS-PITAEVSKII HIERARCHIES
    Chen, Thomas
    Pavlovic, Natasa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (02) : 715 - 739