POTENTIAL OF DEEP LEARNING FOR FOREST HEIGHT ESTIMATION FROM TANDEM-X BISTATIC INSAR DATA

被引:0
作者
Carcereri, Daniel [1 ,2 ]
Rizzoli, Paola [1 ]
Ienco, Dino [3 ]
Bruzzone, Lorenzo [2 ]
机构
[1] German Aerosp Ctr DLR, Microwaves & Radar Inst, Cologne, Germany
[2] Univ Trento UNITN, Trento, Italy
[3] Univ Montpellier, Natl Res Inst Agr Food & Environm INRAE, Montpellier, France
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
forest monitoring; forest height; deep learning; InSAR; TanDEM-X;
D O I
10.1109/IGARSS52108.2023.10281962
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Large-scale and up-to-date canopy height model (CHM) estimates are key to forest resources assessment and disturbance analysis. In this work we present an investigation of the potential of Deep Learning (DL) for the regression of forest height from TanDEM-X bistatic InSAR data. We propose a novel fully convolutional neural network (CNN) framework, trained and tested on four tropical sites in Gabon, Africa, together with a series of experiments for assessing the impact of different input features with specific focus on bistatic InSAR. The obtained results are extremely promising and already in line with state-of-the-art methods based on theoretical modelling, with the remarkable advantage of requiring only one single TanDEM-X acquisition at inference time.
引用
收藏
页码:1481 / 1484
页数:4
相关论文
共 9 条
[1]   Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms [J].
de Almeida, Catherine Torres ;
Galvao, Lenio Soares ;
de Oliveira Cruz e Aragao, Luiz Eduardo ;
Henry Balbaud Ometto, Jean Pierre ;
Jacon, Aline Daniele ;
de Souza Pereira, Francisca Rocha ;
Sato, Luciane Yumie ;
Lopes, Aline Pontes ;
Lima de Alencastro Graca, Paulo Mauricio ;
Silva, Camila Valeria de Jesus ;
Ferreira-Ferreira, Jefferson ;
Longo, Marcos .
REMOTE SENSING OF ENVIRONMENT, 2019, 232
[2]   The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions [J].
Fatoyinbo, Temilola ;
Armston, John ;
Simard, Marc ;
Saatchi, Sassan ;
Denbina, Michael ;
Lavalle, Marco ;
Hofton, Michelle ;
Tang, Hao ;
Marselis, Suzanne ;
Pinto, Naiara ;
Hancock, Steven ;
Hawkins, Brian ;
Duncanson, Laura ;
Blair, Bryan ;
Hansen, Christy ;
Lou, Yunling ;
Dubayah, Ralph ;
Hensley, Scott ;
Silva, Carlos ;
Poulsen, John R. ;
Labriere, Nicolas ;
Barbier, Nicolas ;
Jeffery, Kathryn ;
Kenfack, David ;
Herve, Memiaghe ;
Bissiengou, Pulcherie ;
Alonso, Alfonso ;
Moussavou, Ghislain ;
White, Lee T. J. ;
Lewis, Simon ;
Hibbard, Kathleen .
REMOTE SENSING OF ENVIRONMENT, 2021, 264
[3]   Allometric equations for integrating remote sensing imagery into forest monitoring programmes [J].
Jucker, Tommaso ;
Caspersen, John ;
Chave, Jerome ;
Antin, Cecile ;
Barbier, Nicolas ;
Bongers, Frans ;
Dalponte, Michele ;
van Ewijk, Karin Y. ;
Forrester, David I. ;
Haeni, Matthias ;
Higgins, Steven I. ;
Holdaway, Robert J. ;
Iida, Yoshiko ;
Lorimer, Craig ;
Marshall, Peter L. ;
Momo, Stephane ;
Moncrieff, Glenn R. ;
Ploton, Pierre ;
Poorter, Lourens ;
Rahman, Kassim Abd ;
Schlund, Michael ;
Sonke, Bonaventure ;
Sterck, Frank J. ;
Trugman, Anna T. ;
Usoltsev, Vladimir A. ;
Vanderwel, Mark C. ;
Waldner, Peter ;
Wedeux, Beatrice M. M. ;
Wirth, Christian ;
Woell, Hannsjoerg ;
Woods, Murray ;
Xiang, Wenhua ;
Zimmermann, Niklaus E. ;
Coomes, David A. .
GLOBAL CHANGE BIOLOGY, 2017, 23 (01) :177-190
[4]   TanDEM-X Pol-InSAR Performance for Forest Height Estimation [J].
Kugler, Florian ;
Schulze, Daniel ;
Hajnsek, Irena ;
Pretzsch, Hans ;
Papathanassiou, Konstantinos P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (10) :6404-6422
[5]   Country-wide high-resolution vegetation height mapping with Sentinel-2 [J].
Lang, Nico ;
Schindler, Konrad ;
Wegner, Jan Dirk .
REMOTE SENSING OF ENVIRONMENT, 2019, 233
[6]   Volume Decorrelation Effects in TanDEM-X Interferometric SAR Data [J].
Martone, Michele ;
Rizzoli, Paola ;
Krieger, Gerhard .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) :1812-1816
[7]  
Picard N., 2012, Manual for building tree volume and biomass allometric equations: from field measurement to prediction
[8]   On the Derivation of Volume Decorrelation From TanDEM-X Bistatic Coherence [J].
Rizzoli, Paola ;
Dell'Amore, Luca ;
Bueso-Bello, Jose-Luis ;
Gollin, Nicola ;
Carcereri, Daniel ;
Martone, Michele .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :3504-3518
[9]   Φ-Net: Deep Residual Learning for InSAR Parameters Estimation [J].
Sica, Francescopaolo ;
Gobbi, Giorgia ;
Rizzoli, Paola ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05) :3917-3941