Synthesis and Characterization of Fe2+ Ion-Exchanged TiO2 Materials and Their Supported V2O5 Catalysts for a Great Depression of the Formation of N2O in the Selective Reduction of NO by NH3

被引:1
|
作者
Nguyen, Thi Phuong Thao [1 ,2 ]
Kim, Kang Hun [1 ]
Kim, Moon Hyeon [1 ]
机构
[1] Daegu Univ, Coll Engn, Dept Environm Engn, Jillyang 38453, Gyeongsan, South Korea
[2] Curtin Univ, Curtin Inst Energy Transit, Dept Phys & Astron, GPO Box U1987, Perth, WA 6845, Australia
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 43期
基金
新加坡国家研究基金会;
关键词
TITANIUM-DIOXIDE ANATASE; TIO2(110) SURFACES; RAMAN-SPECTROSCOPY; NITROUS-OXIDE; NITRIC-OXIDE; XPS SPECTRA; IRON-OXIDES; FE3+ IONS; ADSORPTION; WATER;
D O I
10.1021/acs.jpcc.3c04429
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe-exchanged TiO2 substances ("FeTn") were synthesized by subliming a solid mixture of a surface-hydroxylated TiO2 ("HT") with a salt of iron(II) chloride at 200-400 degrees C to utilize them as supports for dramatically decreasing the formation of N2O in the reduction of NO by NH3 over supported V2O5 catalysts. All the FeTns did not undergo the incorporation of Fe cations into the lattice of the HT, the structural transformation, or the formation of any oxygen-containing iron complexes. Unique bands near 2286 cm(-1) by eta(1)-N2O adsorbed on the FeTns disclosed the presence of the Fe as isolated Fe2+ cations, consistent with their Fe 2p(3/2) main and satellite structures. All FeTn-supported V2O5 systems exhibited a noticeable decrease in N2O production at temperatures >= 350 degrees C, by 70-80%, compared to that over an HT-supported V2O5. Thus, such FeTns bode well for use as supports of V2O5 in deNO(x) catalysis.
引用
收藏
页码:21047 / 21062
页数:16
相关论文
共 50 条
  • [31] N2O and NO formation from NH3 oxidation over MnOx/TiO2 catalysts
    Wang, Denghui
    Yao, Qi
    Hui, Shien
    Niu, Yanqing
    FUEL, 2018, 234 : 650 - 655
  • [32] Effect of rutile phase on V2O5 supported over TiO2 mixed phase for the selective catalytic reduction of NO with NH3
    Zhang, Shule
    Zhong, Qin
    Wang, Yining
    APPLIED SURFACE SCIENCE, 2014, 314 : 112 - 118
  • [33] Roles of Promoters in V2O5/TiO2 Catalysts for Selective Catalytic Reduction of NOx with NH3: Effect of Order of Impregnation
    Youn, Seunghee
    Song, Inhak
    Kim, Do Heui
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (05) : 4350 - 4356
  • [34] MAGNETIC-RESONANCE STUDY OF TIO2, V2O5/TIO2, AND V2O5 SUPPORTED RHODIUM CATALYSTS
    MILLER, JB
    DECANIO, SJ
    MICHEL, JB
    DYBOWSKI, C
    JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (12): : 2592 - 2596
  • [35] Effect of pore structure of TiO2 on the SO2 poisoning over V2O5/TiO2 catalysts for selective catalytic reduction of NOx with NH3
    Youn, Seunghee
    Song, Inhak
    Lee, Hwangho
    Cho, Sung June
    Kim, Do Heui
    CATALYSIS TODAY, 2018, 303 : 19 - 24
  • [36] Poisoning Effects of Chlorine on V2O5–WO3/TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3
    Jie Yu
    Lei Qiu
    Yimeng Yin
    Xing Li
    Haohui Chen
    Chizhong Wang
    Huazhen Chang
    Catalysis Surveys from Asia, 2023, 27 : 147 - 154
  • [38] ADSORPTION-DESORPTION STUDIES OF NH3 ON V2O5/TIO2(A) CATALYSTS BY FTIR
    AKBAS, A
    TURKISH JOURNAL OF CHEMISTRY, 1995, 19 (03): : 211 - 218
  • [39] Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2–SiO2–MoO3
    Motonobu Kobayashi
    Ryoji Kuma
    Atushi Morita
    Catalysis Letters, 2006, 112 : 37 - 44
  • [40] Reduced TiO2 inducing highly active V2O5 species for selective catalytic reduction of NO by NH3
    Li, Xiaohai
    Wu, Zihua
    Zeng, Yiqing
    Han, Jiayou
    Zhang, Shule
    Zhong, Qin
    CHEMICAL PHYSICS LETTERS, 2020, 750