The Hurewicz theorem for cubical homology

被引:1
作者
Carranza, Daniel [1 ]
Kapulkin, Krzysztof [2 ]
Tonks, Andrew [3 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD USA
[2] Univ Western Ontario, Western Univ, Dept Math, London, ON, Canada
[3] Univ Malaga, Dept Algebra Geometria & Topol, Malaga, Spain
关键词
Primary; 55N10; Secondary; 55P35; 55U35;
D O I
10.1007/s00209-023-03352-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an elementary proof of the Hurewicz theorem relating homotopy and homology groups of a cubical Kan complex. Our approach is based on the notion of a loop space of a cubical set, developed in a companion paper "Homotopy groups of cubical sets" by the first two authors.
引用
收藏
页数:20
相关论文
共 11 条
[1]   Homology Groups of Cubical Sets with Connections [J].
Barcelo, Helene ;
Greene, Curtis ;
Jarrah, Abdul Salam ;
Welker, Volkmar .
APPLIED CATEGORICAL STRUCTURES, 2021, 29 (03) :415-429
[2]   COLIMIT THEOREMS FOR RELATIVE HOMOTOPY-GROUPS [J].
BROWN, R ;
HIGGINS, PJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1981, 22 (01) :11-41
[3]  
Carranza D., 2022, preprint
[4]  
Doherty B., 2020, Mem. Amer. Math. Soc.
[5]  
Goerss P G, 1999, Progr. Math., V174
[6]  
Grandis M, 2003, Theory and Applications of Categories, V11, P185
[7]   CUBIC CATEGORY WITH CONNECTIONS IS A STRICT TEST CATEGORY [J].
Maltsiniotis, Georges .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2009, 11 (02) :309-326
[8]  
Massey W., 1991, A Basic Course in Algebraic Topology, DOI [10.1007/978-1-4939-9063-4, DOI 10.1007/978-1-4939-9063-4]
[9]  
May J.P, 1967, Van Nostrand Mathematical Studies
[10]   CUBICAL GROUPS WHICH ARE KAN [J].
TONKS, AP .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 81 (01) :83-87