The partial compactification of the universal centralizer

被引:0
作者
Balibanu, Ana [1 ]
机构
[1] Harvard Univ, Dept Math, 1 Oxford St, Cambridge, MA 02138 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 05期
基金
美国国家科学基金会;
关键词
QUANTUM COHOMOLOGY; COULOMB BRANCHES; GAUGE-THEORIES; HESSENBERG; GRASSMANNIANS; THEOREMS; SLICES;
D O I
10.1007/s00029-023-00873-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The universal centralizer of a semisimple algebraic group G is the family of centralizers of regular elements, parametrized by their conjugacy classes. When G is of adjoint type, we construct a smooth, log-symplectic fiberwise compactification (Z) over bar of the universal centralizer (Z) over bar by taking the closure of each fiber in the wonderful compactification (G) over bar. We use the geometry of the wonderful compactification to give an explicit description of the symplectic leaves of (Z) over bar. We also show that its compactified centralizer fibers are isomorphic to certain Hessenberg varieties-we apply this connection to compute the singular cohomology of (Z) over bar, and to study the geometry of the corresponding universal Hessenberg family.
引用
收藏
页数:36
相关论文
共 42 条
[1]   GEOMETRY OF REGULAR HESSENBERG VARIETIES [J].
Abe, Hiraku ;
Fujita, Naoki ;
Zeng, Haozhi .
TRANSFORMATION GROUPS, 2020, 25 (02) :305-333
[2]   Hessenberg varieties, Slodowy slices, and integrable systems [J].
Abe, Hiraku ;
Crooks, Peter .
MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (3-4) :1093-1132
[3]   THE PETERSON VARIETY AND THE WONDERFUL COMPACTIFICATION [J].
Balibanu, Ana .
REPRESENTATION THEORY, 2017, 21 :132-150
[4]   Motivic degree zero Donaldson-Thomas invariants [J].
Behrend, Kai ;
Bryan, Jim ;
Szendroi, Balazs .
INVENTIONES MATHEMATICAE, 2013, 192 (01) :111-160
[5]   Equivariant homology and K-theory of affine Grassmannians and Toda lattices [J].
Bezrukavnikov, R ;
Finkelberg, M ;
Mirkovic, I .
COMPOSITIO MATHEMATICA, 2005, 141 (03) :746-768
[6]   EQUIVARIANT SATAKE CATEGORY AND KOSTANT-WHITTAKER REDUCTION [J].
Bezrukavnikov, Roman ;
Finkelberg, Michael .
MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (01) :39-72
[7]   THEOREMS ON ACTIONS OF ALGEBRAIC GROUPS [J].
BIALYNIC.A .
ANNALS OF MATHEMATICS, 1973, 98 (03) :480-497
[8]   Coulomb branches of 3d N=4 quiver gauge theories and slices in the affine Grassmannian [J].
Braverman, Alexander ;
Finkelberg, Michael ;
Nakajima, Hiraku .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 23 (01) :75-166
[9]   Towards a mathematical definition of Coulomb branches of 3-dimensional N=4 gauge theories, II [J].
Braverman, Alexander ;
Finkelberg, Michael ;
Nakajima, Hiraku .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 22 (05) :1071-1147
[10]  
Brion M., 2005, Progress in Mathematics, V231