Minimax Principle for Eigenvalues of Dual Quaternion Hermitian Matrices and Generalized Inverses of Dual Quaternion Matrices

被引:17
作者
Ling, Chen [1 ]
Qi, Liqun [1 ,2 ]
Yan, Hong [3 ,4 ]
机构
[1] Hangzhou Dianzi Univ, Dept Math, Hangzhou, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Ctr Intelligent Multidimens Data Anal, Kowloon, Hong Kong, Peoples R China
关键词
Dual quaternion matrix; dual quaternion vector; eigenvalue; generalized inverse; linear independence; minimax principle; REPRESENTATION;
D O I
10.1080/01630563.2023.2254090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dual quaternions can represent rigid body motion in 3D spaces, and have found wide applications in robotics, 3D motion modelling and control, and computer graphics. In this paper, we introduce three different right linear independency concepts for a set of dual quaternion vectors, and study some related basic properties for dual quaternion vectors and dual quaternion matrices. We present a minimax principle for eigenvalues of dual quaternion Hermitian matrices. Based upon a newly established Cauchy-Schwarz inequality for dual quaternion vectors and singular value decomposition of dual quaternion matrices, we propose an inequality for singular values of dual quaternion matrices. Finally, we introduce the concept of generalized inverses of dual quaternion matrices, and present necessary and sufficient conditions for a dual quaternion matrix to be one of four types of generalized inverses of another dual quaternion matrix.
引用
收藏
页码:1371 / 1394
页数:24
相关论文
共 33 条
[1]   Compressed sensing for real measurements of quaternion signals [J].
Badenska, Agnieszka ;
Blaszczyk, Lukasz .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (13) :5753-5769
[2]   Unit dual quaternion-based pose optimisation for visual runway observations [J].
Brambley, Galen ;
Kim, Jonghyuk .
IET CYBER-SYSTEMS AND ROBOTICS, 2020, 2 (04) :181-189
[3]  
Bultmann S., 2019, 2019 22TH INT C INFO, P1
[4]   Dual quaternion-based graphical SLAM [J].
Cheng, Jiantong ;
Kim, Jonghyuk ;
Jiang, Zhenyu ;
Che, Wanfang .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 77 :15-24
[5]  
Clifford W.K., 1873, P LOND MATH SOC, V4, P381, DOI [DOI 10.1112/PLMS/S1-4.1.381, 10.1112/plms/s1-4.1.381]
[6]  
Cui Can, 2023, arXiv
[7]  
Cvetkovic-Ilic D.S., 2017, Algebraic Properties of Generalized Inverses
[8]   Hand-eye calibration using dual quaternions [J].
Daniilidis, K .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1999, 18 (03) :286-298
[9]   On generalized inverses of dual matrices [J].
de Falco, Domenico ;
Pennestri, Ettore ;
Udwadia, Firdaus E. .
MECHANISM AND MACHINE THEORY, 2018, 123 :89-106
[10]  
Fan K., 1955, Proceedings of the American Mathematical Society, V6, P111, DOI [DOI 10.1090/S0002-9939-1955-0067841-7, 10.1090/s0002-9939-1955-0067841-7]