Potent antibiotic design via guided search from antibacterial activity evaluations

被引:60
作者
Chen, Lu [1 ]
Yu, Liang [1 ]
Gao, Lin [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
DEEP LEARNING APPROACH; MOLECULAR GENERATION; DRUG DISCOVERY;
D O I
10.1093/bioinformatics/btad059
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The emergence of drug-resistant bacteria makes the discovery of new antibiotics an urgent issue, but finding new molecules with the desired antibacterial activity is an extremely difficult task. To address this challenge, we established a framework, MDAGS (Molecular Design via Attribute-Guided Search), to optimize and generate potent antibiotic molecules. Results: By designing the antibacterial activity latent space and guiding the optimization of functional compounds based on this space, the model MDAGS can generate novel compounds with desirable antibacterial activity without the need for extensive expensive and time-consuming evaluations. Compared with existing antibiotics, candidate antibacterial compounds generated by MDAGS always possessed significantly better antibacterial activity and ensured high similarity. Furthermore, although without explicit constraints on similarity to known antibiotics, these candidate antibacterial compounds all exhibited the highest structural similarity to antibiotics of expected function in the DrugBank database query. Overall, our approach provides a viable solution to the problem of bacterial drug resistance. Availability and implementation: Code of the model and datasets can be downloaded from GitHub (https://github. com/LiangYu-Xidian/MDAGS).
引用
收藏
页数:9
相关论文
共 65 条
[1]   Antibiotic development - economic, regulatory and societal challenges [J].
Ardal, Christine ;
Balasegaram, Manica ;
Laxminarayan, Ramanan ;
McAdams, David ;
Outterson, Kevin ;
Rex, John H. ;
Sumpradit, Nithima .
NATURE REVIEWS MICROBIOLOGY, 2020, 18 (05) :267-274
[2]   MolGPT: Molecular Generation Using a Transformer-Decoder Model [J].
Bagal, Viraj ;
Aggarwal, Rishal ;
Vinod, P. K. ;
Priyakumar, U. Deva .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (09) :2064-2076
[3]  
Benhenda M, 2017, Arxiv, DOI arXiv:1708.08227
[4]   PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning [J].
Born, Jannis ;
Manica, Matteo ;
Oskooei, Ali ;
Cadow, Joris ;
Markert, Greta ;
Martinez, Maria Rodriguez .
ISCIENCE, 2021, 24 (04)
[5]   Antibacterial drug discovery in the resistance era [J].
Brown, Eric D. ;
Wright, Gerard D. .
NATURE, 2016, 529 (7586) :336-343
[6]   GuacaMol: Benchmarking Models for de Novo Molecular Design [J].
Brown, Nathan ;
Fiscato, Marco ;
Segler, Marwin H. S. ;
Vaucher, Alain C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1096-1108
[7]   Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis [J].
Button, Alexander ;
Merk, Daniel ;
Hiss, Jan A. ;
Schneider, Gisbert .
NATURE MACHINE INTELLIGENCE, 2019, 1 (07) :307-315
[8]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[9]  
Chen ZY, 2022, Arxiv, DOI arXiv:2112.00905
[10]   DeepYY1: a deep learning approach to identify YY1-mediated chromatin loops [J].
Dao, Fu-Ying ;
Lv, Hao ;
Zhang, Dan ;
Zhang, Zi-Mei ;
Liu, Li ;
Lin, Hao .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)