GPS 6.0: an updated server for prediction of kinase-specific phosphorylation sites in proteins

被引:50
作者
Chen, Miaomiao [1 ,2 ]
Zhang, Weizhi [1 ,2 ]
Gou, Yujie [1 ,2 ]
Xu, Danyang [1 ]
Wei, Yuxiang [1 ,2 ]
Liu, Dan [1 ,2 ]
Han, Cheng [1 ,2 ]
Huang, Xinhe [1 ,2 ]
Li, Chengzhi [1 ,2 ]
Ning, Wanshan [1 ,2 ]
Peng, Di [1 ,2 ]
Xue, Yu [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Bioinformat & Syst Biol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Key Lab Mol Biophys Minist Educ, Hubei Bioinformat & Mol Imaging Key Lab, Wuhan 430074, Hubei, Peoples R China
[3] Nanjing Univ, Inst Artificial Intelligence Biomed, Nanjing 210031, Peoples R China
基金
国家重点研发计划;
关键词
MUSITEDEEP; MUTATIONS; DISCOVERY; NETWORKS; REVEALS; ALPHA; TOOL;
D O I
10.1093/nar/gkad383
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein phosphorylation, catalyzed by protein kinases (PKs), is one of the most important post-translational modifications (PTMs), and involved in regulating almost all of biological processes. Here, we report an updated server, Group-based Prediction System (GPS) 6.0, for prediction of PK-specific phosphorylation sites (p-sites) in eukaryotes. First, we pre-trained a general model using penalized logistic regression (PLR), deep neural network (DNN), and Light Gradient Boosting Machine (LightGMB) on 490 762 non-redundant p-sites in 71 407 proteins. Then, transfer learning was conducted to obtain 577 PK-specific predictors at the group, family and single PK levels, using a well-curated data set of 30 043 known site-specific kinase-substrate relations in 7041 proteins. Together with the evolutionary information, GPS 6.0 could hierarchically predict PK-specific p-sites for 44046 PKs in 185 species. Besides the basic statistics, we also offered the knowledge from 22 public resources to annotate the prediction results, including the experimental evidence, physical interactions, sequence logos, and p-sites in sequences and 3D structures. The GPS 6.0 server is freely available at https://gps.biocuckoo.cn. We believe that GPS 6.0 could be a highly useful service for further analysis of phosphorylation. [GRAPHICS] .
引用
收藏
页码:W243 / W250
页数:8
相关论文
共 47 条
[1]   mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation [J].
Alayev, A. ;
Salamon, R. S. ;
Berger, S. M. ;
Schwartz, N. S. ;
Cuesta, R. ;
Snyder, R. B. ;
Holz, M. K. .
ONCOGENE, 2016, 35 (27) :3535-3543
[2]   Dissecting the role of protein phosphorylation: a chemical biology toolbox [J].
Bilbrough, Tim ;
Piemontese, Emanuele ;
Seitz, Oliver .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (13) :5691-5730
[3]   Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence [J].
Blom, N ;
Sicheritz-Pontén, T ;
Gupta, R ;
Gammeltoft, S ;
Brunak, S .
PROTEOMICS, 2004, 4 (06) :1633-1649
[4]   The phosphoinositide 3-kinase pathway [J].
Cantley, LC .
SCIENCE, 2002, 296 (5573) :1655-1657
[5]   Phosphorylation regulates cullin-based ubiquitination in tumorigenesis [J].
Chen, Yifan ;
Shao, Xuejing ;
Cao, Ji ;
Zhu, Hong ;
Yang, Bo ;
He, Qiaojun ;
Ying, Meidan .
ACTA PHARMACEUTICA SINICA B, 2021, 11 (02) :309-321
[6]   iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization [J].
Chen, Zhen ;
Zhao, Pei ;
Li, Chen ;
Li, Fuyi ;
Xiang, Dongxu ;
Chen, Yong-Zi ;
Akutsu, Tatsuya ;
Daly, Roger J. ;
Webb, Geoffrey, I ;
Zhao, Quanzhi ;
Kurgan, Lukasz ;
Song, Jiangning .
NUCLEIC ACIDS RESEARCH, 2021, 49 (10)
[7]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[8]   IUPred:: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content [J].
Dosztányi, Z ;
Csizmok, V ;
Tompa, P ;
Simon, I .
BIOINFORMATICS, 2005, 21 (16) :3433-3434
[9]   Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer [J].
Drake, Justin M. ;
Paull, Evan O. ;
Graham, Nicholas A. ;
Lee, John K. ;
Smith, Bryan A. ;
Titz, Bjoern ;
Stoyanova, Tanya ;
Faltermeier, Claire M. ;
Uzunangelov, Vladislav ;
Carlin, Daniel E. ;
Fleming, Daniel Teo ;
Wong, Christopher K. ;
Newton, Yulia ;
Sudha, Sud ;
Vashisht, Ajay A. ;
Huang, Jiaoti ;
Wohlschlegel, James A. ;
Graeber, Thomas G. ;
Witte, Owen N. ;
Stuart, Joshua M. .
CELL, 2016, 166 (04) :1041-1054
[10]   CD-HIT: accelerated for clustering the next-generation sequencing data [J].
Fu, Limin ;
Niu, Beifang ;
Zhu, Zhengwei ;
Wu, Sitao ;
Li, Weizhong .
BIOINFORMATICS, 2012, 28 (23) :3150-3152