Hexaindium Heptasulfide/Nitrogen and Sulfur Co-Doped Carbon Hollow Microspindles with Ultrahigh-Rate Sodium Storage through Stable Conversion and Alloying Reactions

被引:56
作者
Zhu, Chunyan [1 ]
Yu, Weiqing [1 ]
Zhang, Shuxian [1 ]
Chen, Jianchao [1 ]
Liu, Qingyuan [1 ]
Li, Qingyu [1 ]
Wang, Shijie [2 ]
Hua, Minghao [1 ]
Lin, Xiaohang [1 ]
Yin, Longwei [1 ]
Wang, Rutao [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
anode materials; In6S7; NSC hollow microspindles; metal-organic frameworks; sodium-ion charge storage; sodium-ion capacitors; NA-ION; PERFORMANCE; ANODE; NANOSHEETS; OXIDE;
D O I
10.1002/adma.202211611
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Group IIIA-VA metal sulfides (GMSs) have attracted increasing attention because of their unique Na-storage mechanisms through combined conversion and alloying reactions, thus delivering large theoretical capacities and low working potentials. However, Na+ diffusion within GMSs anodes leads to severe volume change, generally representing a fundamental limitation to rate capability and cycling stability. Here, monodispersed In6S7/nitrogen and sulfur co-doped carbon hollow microspindles (In6S7/NSC HMS) are produced by morphology-preserved thermal sulfurization of spindle-like and porous indium-based metal organic frameworks. The resulting In6S7/NSC HMS anode exhibits theoretical-value-close specific capacity (546.2 mAh g(-1) at 0.1 A g(-1)), ultrahigh rate capability (267.5 mAh g(-1) at 30.0 A g(-1)), high initial coulombic efficiency (approximate to 93.5%), and approximate to 92.6% capacity retention after 4000 cycles. This kinetically favored In6S7/NSC HMS anode fills up the kinetics gap with a capacitive porous carbon cathode, enabling a sodium-ion capacitor to deliver an ultrahigh energy density of 136.3 Wh kg(-1) and a maximum power density of 47.5 kW kg(-1). The in situ/ex situ analytical techniques and theoretical calculation both show that the robust and fast Na+ charge storage of In6S7/NSC HMS arises from the multi-electron redox mechanism, buffered volume expansion, negligible morphological change, and surface-controlled solid-state Na+ transport.
引用
收藏
页数:14
相关论文
共 78 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]  
Bard a., 2002, RUSS J ELECTROCHEM, V38, P1505, DOI [10.1023/A:1021637209564, DOI 10.1023/A:1021637209564]
[4]   Electronic structure of the hexaindium heptasulfide In6S7 [J].
Ben Abdallah, H. ;
Bennaceur, R. .
PHYSICA B-CONDENSED MATTER, 2006, 382 (1-2) :181-188
[5]   Comprehensive Understanding of Sodium-Ion Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments [J].
Cai, Peng ;
Zou, Kangyu ;
Deng, Xinglan ;
Wang, Baowei ;
Zheng, Min ;
Li, Longhao ;
Hou, Hongshuai ;
Zou, Guoqiang ;
Ji, Xiaobo .
ADVANCED ENERGY MATERIALS, 2021, 11 (16)
[6]   Bimetallic Sulfide Sb2S3@FeS2 Hollow Nanorods as High-Performance Anode Materials for Sodium-Ion Batteries [J].
Cao, Liang ;
Gao, Xuanwen ;
Zhang, Bao ;
Ou, Xing ;
Zhang, Jiafeng ;
Luo, Wen-Bin .
ACS NANO, 2020, 14 (03) :3610-3620
[7]   In-MOF-Derived Hierarchically Hollow Carbon Nanostraws for Advanced Zinc-Iodine Batteries [J].
Chai, Lulu ;
Wang, Xian ;
Hu, Yue ;
Li, Xifei ;
Huang, Shaoming ;
Pan, Junqing ;
Qian, Jinjie ;
Sun, Xueliang .
ADVANCED SCIENCE, 2022, 9 (33)
[8]   Pseudocapacitive Anode Materials toward High-Power Sodium-Ion Capacitors [J].
Chang, Xiaoqing ;
Huang, Tingyi ;
Yu, Jiayu ;
Li, Junbin ;
Wang, Jian ;
Wei, Qiulong .
BATTERIES & SUPERCAPS, 2021, 4 (10) :1567-1587
[9]   Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-ion battery anode with ultralong high-rate cycling [J].
Chen, Bochao ;
Qin, Hongye ;
Li, Kai ;
Zhang, Biao ;
Liu, Enzuo ;
Zhao, Naiqin ;
Shi, Chunsheng ;
He, Chunnian .
NANO ENERGY, 2019, 66
[10]   A Novel Hybrid Point Defect of Oxygen Vacancy and Phosphorus Doping in TiO2 Anode for High-Performance Sodium Ion Capacitor [J].
Chen, Daming ;
Wu, Youchun ;
Huang, Zhiquan ;
Chen, Jian .
NANO-MICRO LETTERS, 2022, 14 (01)