TAKDE: Temporal Adaptive Kernel Density Estimator for Real-Time Dynamic Density Estimation

被引:5
作者
Wang, Yinsong [1 ]
Ding, Yu [2 ]
Shahrampour, Shahin [1 ]
机构
[1] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Kernel; Estimation; Real-time systems; Bandwidth; Density functional theory; Nanoparticles; Upper bound; Adaptive estimation; asymptotic mean integrated squared error; kernel density estimation; real-time density estimation; CHOICE;
D O I
10.1109/TPAMI.2023.3297950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-time density estimation is ubiquitous in many applications, including computer vision and signal processing. Kernel density estimation is arguably one of the most commonly used density estimation techniques, and the use of "sliding window" mechanism adapts kernel density estimators to dynamic processes. In this article, we derive the asymptotic mean integrated squared error (AMISE) upper bound for the "sliding window" kernel density estimator. This upper bound provides a principled guide to devise a novel estimator, which we name the temporal adaptive kernel density estimator (TAKDE). Compared to heuristic approaches for "sliding window" kernel density estimator, TAKDE is theoretically optimal in terms of the worst-case AMISE. We provide numerical experiments using synthetic and real-world datasets, showing that TAKDE outperforms other state-of-the-art dynamic density estimators (including those outside of kernel family). In particular, TAKDE achieves a superior test log-likelihood with a smaller run-time.
引用
收藏
页码:13831 / 13843
页数:13
相关论文
共 31 条
  • [21] KERNEL DENSITY-ESTIMATION WITH BINNED DATA
    SCOTT, DW
    SHEATHER, SJ
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (06) : 1353 - 1359
  • [22] OPTIMAL AND DATA-BASED HISTOGRAMS
    SCOTT, DW
    [J]. BIOMETRIKA, 1979, 66 (03) : 605 - 610
  • [23] Kernel bandwidth optimization in spike rate estimation
    Shimazaki, Hideaki
    Shinomoto, Shigeru
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2010, 29 (1-2) : 171 - 182
  • [24] Silverman B. W., 2018, DENSITY ESTIMATION S, DOI 10.1201/9781315140919
  • [26] THE MAXIMAL SMOOTHING PRINCIPLE IN DENSITY-ESTIMATION
    TERRELL, GR
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) : 470 - 477
  • [27] Vaswani A, 2017, ADV NEUR IN, V30
  • [28] Wand M.P., 1994, Kernel Smoothing
  • [29] Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate
    Woehl, Taylor J.
    Park, Chiwoo
    Evans, James E.
    Arslan, Ilke
    Ristenpart, William D.
    Browning, Nigel D.
    [J]. NANO LETTERS, 2014, 14 (01) : 373 - 378
  • [30] Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories
    Zheng, Haimei
    Smith, Rachel K.
    Jun, Young-wook
    Kisielowski, Christian
    Dahmen, Ulrich
    Alivisatos, A. Paul
    [J]. SCIENCE, 2009, 324 (5932) : 1309 - 1312