Machine Learning Assisted Prediction of Airfoil Lift-to-Drag Characteristics for Mars Helicopter

被引:6
作者
Zhao, Pengyue [1 ,2 ,3 ]
Gao, Xifeng [1 ,2 ]
Zhao, Bo [1 ,2 ]
Liu, Huan [1 ,2 ]
Wu, Jianwei [1 ,2 ]
Deng, Zongquan [3 ]
机构
[1] Harbin Inst Technol, Ctr Ultraprecis Optoelect Instrumentat Engn, Harbin 150001, Peoples R China
[2] Minist Ind Informat Technol, Key Lab Ultraprecis Intelligent Instrumentat, Harbin 150080, Peoples R China
[3] Harbin Inst Technol, State Key Lab Robot & Syst, 92, Xidazhi St, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
machine learning; Mars helicopter; computational fluid dynamics; airfoil; aerodynamic properties; AERODYNAMIC CHARACTERISTICS; ASPECT-RATIO; DESIGN; ROTOR; WINGS;
D O I
10.3390/aerospace10070614
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The aerodynamic properties of rotor systems operating within low Reynolds number flow field conditions are profoundly influenced by their geometric and flight parameters. Precise estimation of optimal airfoil parameters at different angles of attack is indispensable for enhancing these aerodynamic properties. This study presents a technique for optimizing the airfoil parameters of a Mars helicopter by employing machine learning methods in conjunction with computational fluid dynamics (CFD) simulations, thereby circumventing the need for expensive experiments and simulations. The effectiveness of diverse machine learning algorithms for prediction is evaluated, and the resultant models are utilized for airfoil optimization. Ultimately, the aerodynamic properties of the optimized airfoil are experimentally validated. The experimental findings exhibit agreement with the simulated predictions, indicating the successful optimization of the aerodynamic properties. This research offers valuable insights into the influence of airfoil parameters on the aerodynamic properties of the Mars helicopter, along with guidance for airfoil optimization.
引用
收藏
页数:17
相关论文
共 41 条
  • [1] MEAN SQUARE ERROR OF PREDICTION AS A CRITERION FOR SELECTING VARIABLES
    ALLEN, DM
    [J]. TECHNOMETRICS, 1971, 13 (03) : 469 - &
  • [2] [Anonymous], 2013, Neural networks: a systematic introduction
  • [3] Experimental Investigation of Micro Air Vehicle Scale Helicopter Rotor in Hover
    Benedict, Moble
    Winslow, Justin
    Hasnain, Zohaib
    Chopra, Inderjit
    [J]. INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES, 2015, 7 (03) : 231 - 255
  • [4] Bensignor I., 2022, P AIAA AVIATION 2022, P3958
  • [5] Aspect-Ratio Effects on Aeromechanics of Membrane Wings at Moderate Reynolds Numbers
    Bleischwitz, R.
    de Kat, R.
    Ganapathisubramani, B.
    [J]. AIAA JOURNAL, 2015, 53 (03) : 780 - 788
  • [6] Small Rotor Design Optimization Using Blade Element Momentum Theory and Hover Tests
    Bohorquez, Felipe
    Pines, Darryll
    Samuel, Paul D.
    [J]. JOURNAL OF AIRCRAFT, 2010, 47 (01): : 268 - 283
  • [7] Special Issue on Development of Autonomous Unmanned Aerial Vehicles
    Chen, Chang
    Chen, Ben M.
    Lee, T. H.
    [J]. MECHATRONICS, 2011, 21 (05) : 763 - 764
  • [8] SUPPORT-VECTOR NETWORKS
    CORTES, C
    VAPNIK, V
    [J]. MACHINE LEARNING, 1995, 20 (03) : 273 - 297
  • [9] Mars Exploration Rover mission
    Crisp, JA
    Adler, M
    Matijevic, JR
    Squyres, SW
    Arvidson, RE
    Kass, DM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E12)
  • [10] Drucker H, 1997, ICML, P107