Pan-integrals of set-valued functions based on fuzzy measures

被引:3
作者
Kang, Tong [1 ,2 ]
Wu, Dongsheng [3 ]
Li, Jun [1 ,4 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
[2] Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[3] Univ Alabama Huntsville, Dept Math Sci, Huntsville, AL 35899 USA
[4] Commun Univ China, Sch Sci, Beijing 100024, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy measure; Pan-integral; Set-valued function; Set-valued pan-integral; CHOQUET INTEGRALS;
D O I
10.1016/j.fss.2023.108632
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose the set-valued pan-integral of set-valued function based on number-valued fuzzy measure and present some basic properties. By means of a preorder on the class of all nonempty set of R1, we show the monotonicity of set-valued pan-integral in the sense of the preorder. We introduce an equivalence relation based on the preorder and demonstrate the linearity of set-valued pan-integral in the sense of the equivalence relation. The relationships of the set-valued pan-integral and the set-valued Choquet integral are discussed. Chebyshev's inequality of set-valued pan-integrals is shown. An open problem concerning the linearity of the set-valued pan-integral is raised.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 35 条
[1]  
[Anonymous], 1974, Dr. Thesis
[2]  
[Anonymous], 1953, Ann. Inst. Fourier, DOI [DOI 10.5802/AIF.53, 10.5802/aif.53]
[3]  
Aubin J.P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[4]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[5]   Special Issue on Set Valued Analysis 2021 [J].
Croitoru, Anca ;
Mesiar, Radko ;
Sambucini, Anna Rita ;
Satco, Bianca .
MATHEMATICS, 2022, 10 (15)
[6]   Convergence Theorems in Interval-Valued Riemann-Lebesgue Integrability [J].
Croitoru, Anca ;
Gavrilut, Alina ;
Iosif, Alina ;
Sambucini, Anna Rita .
MATHEMATICS, 2022, 10 (03)
[7]   Strong integral of multifunctions relative to a fuzzy measure [J].
Croitoru, Anca .
FUZZY SETS AND SYSTEMS, 2014, 244 :20-33
[8]  
Diamond O., 1994, METRIC SPACES FUZZY
[9]  
Gavrilut A, 2015, IRAN J FUZZY SYST, V12, P27
[10]  
Gavrilut A., 2023, STUDIES SYSTEMS DECI, V448