Determining Ion Activity Coefficients in Ion-Exchange Membranes with Machine Learning and Molecular Dynamics Simulations

被引:10
作者
Gallage Dona, Hishara Keshani [1 ]
Olayiwola, Teslim [2 ]
Briceno-Mena, Luis A. [2 ]
Arges, Christopher G. [3 ]
Kumar, Revati [1 ]
Romagnoli, Jose A. [2 ]
机构
[1] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA
[3] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
关键词
POLYELECTROLYTE SOLUTIONS; COUNTERION CONDENSATION; POTENTIAL FUNCTIONS; GENETIC ALGORITHM; SORPTION; CONDUCTIVITY; TRANSPORT; DESIGN;
D O I
10.1021/acs.iecr.3c00636
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The activity coefficients of ions in polymeric ion-exchangemembranes(IEMs) dictate the equilibrium partitioning coefficient of the ionsbetween the membrane and the liquid. It also affects ion transportprocesses, such as conductivity, in ion-exchange membranes. Accuratelypredicting the ion activity coefficient without experimental datahas been elusive as most models are empirical or semi-empirical. Thiswork employs an embedding process that maps microscopic and macroscopicproperties for modeling of ion activity coefficients in IEMs withmolecular dynamics (MD) and machine learning (ML). This strategy iseffective for accurately predicting activity coefficients in variousIEM materials, including random copolymer and block copolymer systems.ML algorithms are increasingly being used for the analysis of complexsystems when limited knowledge is available. The framework uses smallexperimental activity coefficient datasets in conjunction with polymerstructure information and molecular attributes describing the solvationof ions and polymers to predict the ion activity coefficient in IEMs.Two different ML models were developed to estimate the molecular attributesand the ion activity coefficient. The best ML model accurately predictsthe solvation descriptors and ion activity coefficient with an averagemean absolute error of <7 and 10%, respectively. Adopting the saidapproach allows for the estimation of ion activity coefficients inIEMs without the need for new time-consuming MD simulation runs andexperiments.
引用
收藏
页码:9533 / 9548
页数:16
相关论文
共 64 条
[1]   Selective and Chemical-Free Removal of Toxic Heavy Metal Cations from Water Using Shock Ion Extraction [J].
Alkhadra, Mohammad A. ;
Jordan, Matthew L. ;
Tian, Huanhuan ;
Arges, Christopher G. ;
Bazant, Martin Z. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, :14091-14098
[2]  
[Anonymous], 2022, RDKIT OPEN SOURCE CH
[3]   Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? [J].
Bajusz, David ;
Racz, Anita ;
Heberger, Kroly .
JOURNAL OF CHEMINFORMATICS, 2015, 7
[4]   Designing exceptional gas-separation polymer membranes using machine learning [J].
Barnett, J. Wesley ;
Bilchak, Connor R. ;
Wang, Yiwen ;
Benicewicz, Brian C. ;
Murdock, Laura A. ;
Bereau, Tristan ;
Kumar, Sanat K. .
SCIENCE ADVANCES, 2020, 6 (20)
[5]   Pymoo: Multi-Objective Optimization in Python']Python [J].
Blank, Julian ;
Deb, Kalyanmoy .
IEEE ACCESS, 2020, 8 :89497-89509
[6]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[7]  
Briceno-Mena L. A., 2021, COMPUTER AIDED CHEM, V50, P279
[8]   PemNet: A Transfer Learning-Based Modeling Approach of High-Temperature Polymer Electrolyte Membrane Electrochemical Systems [J].
Briceno-Mena, Luis A. ;
Romagnoli, Jose A. ;
Arges, Christopher G. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (09) :3350-3357
[9]  
de Pablo J. J., 2018, MOL ENG THERMODYNAMI
[10]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197