Solution-Based Mesh Adaption Criteria Development for Accelerating Flame Tracking Simulations

被引:0
|
作者
Shrivastava, Sourabh [1 ]
Verma, Ishan [1 ]
Yadav, Rakesh [2 ]
Nakod, Pravin [1 ]
机构
[1] Ansys Inc, Pune 411057, Maharashtra, India
[2] Ansys Inc, San Diego, CA 92121 USA
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2023年 / 145卷 / 05期
关键词
REFINEMENT; PROPAGATION; COMBUSTION;
D O I
10.1115/1.4055751
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Solution-based mesh adaption approaches have been widely studied and tested by different research groups to generate the required finer meshes in the critical regions on the fly while keeping the overall mesh count to a manageable level. However, these approaches are typically applicable for a set of problems, and therefore, there is a need for a generic approach suitable for a broader range of problems. This work explores various parameters and specific weightage factors to predict correct flame-tracking outcomes for different types of flames. The selections of flow quantities (flow variables, their gradients, curvatures) are performed using simple flames and flow configurations. The functions based on selected flow-quantities derived from these studies are then tested to predict the results for the more complex set of published flames like the Engine Combustion Network (ECN) spray flame and Knowledge for Ignition, Acoustics, and Instabilities (KIAI) five-burner configuration (liquid and gas fuel). Derived adaption criteria are found to predict the correct flame tracking behavior in terms of transient evolution of flame front, flame propagation, and ignition timing of burners. The parameters used for the study are identified keeping genericity as the key point, and thus making sure that the derived adaption functions can be applied across different types of fuel blends, combustion systems (gaseous or liquid fuel-based systems) and combustion models, for example, species transport or mixture fraction-based models.
引用
收藏
页数:11
相关论文
共 1 条
  • [1] SOLUTION-BASED MESH ADAPTION CRITERIA DEVELOPMENT FOR ACCELERATING FLAME TRACKING SIMULATIONS
    Shrivastava, Sourabh
    Verma, Ishan
    Yadav, Rakesh
    Nakod, Pravin
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 3B, 2022,