90-m/560-Mbps underwater wireless optical communication utilizing subband multiple-mode full permutation CAP combined with an SNR-weighted detector and multi-channel DFE

被引:7
作者
Ge, Wenmin [1 ,2 ]
Du, Zihao [2 ]
Cai, Chengye [1 ,2 ]
Song, Guangbin [1 ,2 ,3 ]
Qin, Sitong [1 ,2 ]
Wang, Haipeng [1 ,2 ]
Zhang, Tianhao [1 ,2 ]
Xu, Jing [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Ocean Coll, Opt Commun Lab, Zheda Rd 1, Zhoushan 316021, Zhejiang, Peoples R China
[2] Zhejiang Univ, Joint Res Ctr Marine Optoelect Technol, ZTT Ocean Coll, Zheda Rd 1, Zhoushan 316021, Zhejiang, Peoples R China
[3] Zhejiang Univ, Hainan Inst, Sanya, Peoples R China
基金
中国国家自然科学基金;
关键词
INDEX CARRIERLESS AMPLITUDE; PHASE MODULATION; DISCRETE MULTITONE; UWOC SYSTEM; TRANSMISSION;
D O I
10.1364/OE.487110
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, a joint signal processing scheme including a subband multiple-mode full permutation carrierless amplitude phase modulation (SMMP-CAP), signal-to-noise ratio weighted detector (SNR-WD), and multi-channel decision feedback equalizer (MC-DFE) is proposed to mitigate the bandwidth limitation of a high-speed long-reach underwater wireless optical communication (UWOC) system. Referring to the trellis coded modulation (TCM) subset division strategy, 16 quadrature amplitude modulation (QAM) mapping set is divided into four 4-QAM mapping subsets by SMMP-CAP scheme. An SNR-WD and an MC-DFE are employed to enhance the demodulation effect of this system in a fading channel. In a laboratory experiment, the minimal required received optical powers (ROPs) for data rates of 480 Mbps, 600 Mbps, and 720 Mbps, at hard-decision forward error correction (HD-FEC) threshold of 3.80 x 10-3 , are-32.7 dBm,-31.3 dBm, and-25.5 dBm, respectively. Moreover, the proposed system successfully achieves a data rate of 560 Mbps in a swimming pool with a transmission distance up to 90 m and a total attenuation measured to be 54.64 dB. To the best of our knowledge, this is the first time to demonstrate a high-speed, long-distance UWOC system by employing an SMMP-CAP scheme.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:13154 / 13168
页数:15
相关论文
共 42 条
[21]   16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization [J].
Fei, Chao ;
Hong, Xiaojian ;
Zhang, Guowu ;
Du, Ji ;
Gong, Yu ;
Evans, Julian ;
He, Sailing .
OPTICS EXPRESS, 2018, 26 (26) :34060-34069
[22]   Visible light communications: multi-band super-Nyquist CAP modulation [J].
Haigh, P. A. ;
Chvojka, P. ;
Ghassemlooy, Z. ;
Zvanovec, S. ;
Darwazeh, I .
OPTICS EXPRESS, 2019, 27 (06) :8912-8919
[23]   Experimental Demonstration of 55-m/2-Gbps Underwater Wireless Optical Communication Using SiPM Diversity Reception and Nonlinear Decision-Feedback Equalizer [J].
Hong, Xiaojian ;
Du, Ji ;
Wang, Yuan ;
Chen, Ruilin ;
Tian, Jiahan ;
Zhang, Guowu ;
Zhang, Junwei ;
Fei, Chao ;
He, Sailing .
IEEE ACCESS, 2022, 10 :47814-47823
[24]   Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit [J].
Hong, Xiaojian ;
Fei, Chao ;
Zhang, Guowu ;
Du, Ji ;
He, Sailing .
OPTICS LETTERS, 2019, 44 (03) :558-561
[25]  
LIN X, 2023, ASIA-PAC J ACCOUNT E, V10, P79
[26]  
Lu C., 2019, P C LAS EL OPT CLEO
[27]   Error Probability Analysis of OFDM-IM With Carrier Frequency Offset [J].
Ma, Qianli ;
Yang, Ping ;
Xiao, Yue ;
Bai, Huirong ;
Li, Shaoqian .
IEEE COMMUNICATIONS LETTERS, 2016, 20 (12) :2434-2437
[28]   Optical dual-mode index modulation aided OFDM for visible light communications [J].
Mao, Tianqi ;
Jiang, Rui ;
Bai, Ruowen .
OPTICS COMMUNICATIONS, 2017, 391 :37-41
[29]  
Palmeiro A, 2011, OCEANS-IEEE
[30]   RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments [J].
Qureshi, Umair Mujtaba ;
Shaikh, Faisal Karim ;
Aziz, Zuneera ;
Shah, Syed M. Zafi S. ;
Sheikh, Adil A. ;
Felemban, Emad ;
Bin Qaisar, Saad .
SENSORS, 2016, 16 (06)