LOG-TRANSFORM AND THE WEAK HARNACK INEQUALITY FOR KINETIC FOKKER-PLANCK EQUATIONS

被引:11
作者
Guerand, Jessica [1 ]
Imbert, Cyril [2 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
[2] PSL Res Univ, CNRS, Ecole Normale Super, Dept Math & Applicat, 45 Rue Ulm, F-75005 Paris, France
关键词
kinetic theory; Fokker-Planck equation; Holder continuity; Poincare inequality; Harnack inequality; C-ALPHA REGULARITY; ULTRAPARABOLIC EQUATIONS;
D O I
10.1017/S1474748022000160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with kinetic Fokker-Planck equations with essentially bounded coefficients. A weak Harnack inequality for nonnegative super-solutions is derived by considering their log-transform and adapting an argument due to S. N. Kruzkov (1963). Such a result rests on a new weak Poincare inequality sharing similarities with the one introduced by W. Wang and L. Zhang in a series of works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic equations.
引用
收藏
页码:2749 / 2774
页数:26
相关论文
共 43 条
[1]  
Anceschi F., 2020, CAUCHY PROBLEM DIFFU
[2]   Moser's estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients [J].
Anceschi, Francesca ;
Polidoro, Sergio ;
Ragusa, Maria Alessandra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
[3]   A geometric statement of the Harnack inequality for a degenerate Kolmogorov equation with rough coefficients [J].
Anceschi, Francesca ;
Eleuteri, Michela ;
Polidoro, Sergio .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (07)
[4]  
[Anonymous], 1957, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat.
[5]  
Armstrong S., 2019, PREPRINT
[6]   L(p) estimates for some ultraparabolic operators with discontinuous coefficients [J].
Bramanti, M ;
Cerutti, MC ;
Manfredini, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (02) :332-354
[7]   Pointwise estimates for a class of non-homogeneous Kolmogorov equations [J].
Cinti, Chiara ;
Pascucci, Andrea ;
Polidoro, Sergio .
MATHEMATISCHE ANNALEN, 2008, 340 (02) :237-264
[8]  
De Giorgi E., 1956, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, V20, P438
[9]  
DIBENEDETTO E, 1984, ANN I H POINCARE-AN, V1, P295
[10]  
Evans LC., 2010, Partial Differential Equations, V2