Fiber-Optic Sensor Array for Distributed Underwater Ultrasound Sensing

被引:2
|
作者
Arbel, Nadav [1 ]
Tur, Moshe [1 ]
Eyal, Avishay [1 ]
机构
[1] Tel Aviv Univ, Sch EE, IL-6997801 Tel Aviv, Israel
关键词
Optical fiber sensors; Acoustics; Optical fiber communication; Acoustic arrays; Optical reflection; Optical arrays; Optical pulses; FBG array; quasi-distributed sensors; perfect periodic auto-correlation codes; underwater acoustic;
D O I
10.1109/JLT.2023.3314515
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Acoustic sensing in the ultrasound range is important for a variety of underwater applications, such as sonar, navigation, oceanography, marine life research, imaging and mapping of the seabed, depth measurement, and underwater acoustic communications. However, traditional acoustic point sensors have limited spatial coverage and are not practical for synchronized spatiotemporal measurements of propagating acoustic waves. Fiber-optic hydrophone arrays can overcome these limitations as they offer extended detection volume and synchronized measurements at multiple positions. However, standard interrogation techniques of reflectometric-based fiber-optic sensing arrays are limited by a trade-off between the array length and the achievable acoustic bandwidth. This article describes a theoretical and experimental study of an interrogation method which alleviates this limitation. The method was used to interrogate a Quasi-Distributed Acoustic Sensing (Q-DAS) array with a maximum length of 4 km, having a classical maximum interrogation rate of 25 kHz. The array comprised 26 weak Fiber Bragg Gratings (FBGs), out of which 9 were deployed underwater in a 20 m long test pool. The method achieved an interrogation rate of 5 MHz, which is 200 times faster than the conventional limit. It facilitated spatiotemporal tracking of ultrasound pulses, whose carrier frequencies were as high as 100 kHz. The results of this work demonstrate the potential of the method for a variety of underwater applications.
引用
收藏
页码:945 / 954
页数:10
相关论文
共 50 条
  • [41] Fiber-Optic Distributed Acoustic Sensing for Smart Grid Application
    Zhang, Xiaofeng
    Qi, Jun
    Liang, Xiao
    Guan, Zhen
    Liu, Zeguang
    Zhang, Chang
    Chen, Dabin
    Deng, Weifeng
    Xu, Changzhi
    Wang, Xinwei
    Liu, Huanhuan
    PHOTONICS, 2025, 12 (01)
  • [42] Distributed Fiber-Optic Strain Sensing in Deep Mixed Columns
    Hov, Slve
    Meland, Henrik
    Helvacioglu, Anil
    Thurner, Robert
    Wist Amdal, Ase Marit
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2025, 151 (02)
  • [43] A Review of Distributed Fiber-Optic Sensing in the Oil and Gas Industry
    Ashry, Islam
    Mao, Yuan
    Wang, Biwei
    Hveding, Frode
    Bukhamsin, Ahmed
    Ng, Tien Khee
    Ooi, Boon S.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (05) : 1407 - 1431
  • [44] Metasurface-Enhanced Fiber-Optic Distributed Acoustic Sensing
    Jing, Qiang
    Meng, Lingfeng
    Tang, Rong
    Wang, Jiahao
    Ran, Zengling
    Rao, Yunjiang
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2025, 43 (06) : 2943 - 2948
  • [45] FIBER-OPTIC SENSING Simple, rugged fiber-optic pressure sensor works over large temperature ranges
    Wallace, John
    LASER FOCUS WORLD, 2018, 54 (09): : 18 - 19
  • [46] Signal Processing in Smart Fiber-Optic Distributed Acoustic Sensor
    Wu Huijuan
    Wang Xinlei
    Liao Haibei
    Jiao Xiben
    Liu Yiyu
    Shu Xinjian
    Wang Jinglun
    Rao Yunjiang
    ACTA OPTICA SINICA, 2024, 44 (01)
  • [47] DISTRIBUTED FIBER-OPTIC SENSOR FOR DETECTION AND LOCALIZATION OF ACOUSTIC VIBRATIONS
    Sifta, Radim
    Munster, Petr
    Sysel, Petr
    Horvath, Tomas
    Novotny, Vit
    Krajsa, Ondrej
    Filka, Miloslav
    METROLOGY AND MEASUREMENT SYSTEMS, 2015, 22 (01) : 111 - 118
  • [48] Quasi-distributed recirculation fiber-optic temperature sensor
    Polyakov A.V.
    Ksenofontov M.A.
    Optical Memory and Neural Networks, 2009, 18 (4) : 271 - 277
  • [49] A positioning algorithm realized multilateration for distributed fiber-optic sensor
    Ye, Zi
    Wang, Jian
    Wang, Chao
    Jia, Bo
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2016, 58 (12) : 2913 - 2917
  • [50] Optimum sensor configuration for a distributed fiber-optic calorimetric dosimeter
    Prikhodko, Victor
    Tregubov, Aleksey
    Alekseyev, Alexander
    Pribylov, Maksim
    OPTICS AND LASER TECHNOLOGY, 2025, 181