Coexistence and competitive exclusion in a time-periodic Lotka-Volterra competition-diffusion system

被引:2
作者
Li, Zhenzhen [1 ]
Dai, Binxiang [1 ]
Chen, Yuming [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
[2] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
competition-diffusion system; coexistence; competitive exclusion; principal eigenvalue; Monotone system; SPATIAL HETEROGENEITY; PRINCIPAL EIGENVALUE; PARABOLIC-SYSTEMS; DISPERSAL RATES; GLOBAL DYNAMICS; BIFURCATION; ADVECTION; EVOLUTION;
D O I
10.1016/j.jde.2023.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The evolutionary impact of both temporal periodicity and spatial heterogeneity on population ecology is a challenging problem. Hutson et al. (2001) [12] and Bai et al. (2022) [2] studied the effects of diffusion rates on the dynamics of a time-periodic Lotka-Volterra competition-diffusion system with identical interspecific competition abilities. In this paper, we consider the case of different interspecific competition coefficients. The obtained results can be divided into two groups. The first part focuses on the interplay between the diffusion intensities and the interspecific competition coefficients on the dynamics in the weak competition case. We provide some sufficient conditions on coexistence and competitive exclusion. The second part considers the dynamics for fixed diffusion coefficients and varying competition coefficients. We not only provide a complete classification on the dynamics when one of the interspecific competition coefficients is small, but also show the multiple coexistence periodic patterns by applying the bifurcation method.& COPY; 2023 Elsevier Inc.All rights reserved
引用
收藏
页码:654 / 698
页数:45
相关论文
共 30 条
[1]   Dynamics of a periodic-parabolic Lotka-Volterra competition-diffusion system in heterogeneous environments [J].
Bai, Xueli ;
He, Xiaoqing ;
Ni, Wei-Ming .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (11) :4583-4637
[2]   Asymptotic behavior of the principal eigenvalue for cooperative periodic-parabolic systems and applications [J].
Bai, Xueli ;
He, Xiaoqing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) :9868-9903
[3]  
Cantrell R. S., 2003, Spatial ecology via reaction-diffusion equations
[4]   IDEAL FREE DISPERSAL UNDER GENERAL SPATIAL HETEROGENEITY AND TIME PERIODICITY [J].
Cantrell, Robert Stephen ;
Cosner, Chris ;
Lam, King-Yeung .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (03) :789-813
[5]   Evolutionary stability of ideal free dispersal under spatial heterogeneity and time periodicity [J].
Cantrell, Robert Stephen ;
Cosner, Chris .
MATHEMATICAL BIOSCIENCES, 2018, 305 :71-76
[6]   STABLE COEXISTENCE STATES IN THE VOLTERRA-LOTKA COMPETITION MODEL WITH DIFFUSION [J].
COSNER, C ;
LAZER, AC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (06) :1112-1132
[7]  
Crandall MichaelG., 1971, J FUNCT ANAL, V8, P321, DOI [DOI 10.1016/0022-1236(71)90015-2, 10.1016/0022-1236(71)90015-2]
[8]   The evolution of slow dispersal rates: a reaction diffusion model [J].
Dockery, J ;
Hutson, V ;
Mischaikow, K ;
Pernarowski, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (01) :61-83
[9]   Global Dynamics of the Lotka-Volterra Competition-Diffusion System: Diffusion and Spatial Heterogeneity I [J].
He, Xiaoqing ;
Ni, Wei-Ming .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (05) :981-1014
[10]  
Hess P., 1991, PERIODIC PARABOLIC B