Taming Glioblastoma in "Real Time": Integrating Multimodal Advanced Neuroimaging/AI Tools Towards Creating a Robust and Therapy Agnostic Model for Response Assessment in Neuro-Oncology

被引:10
作者
de Godoy, Laiz Laura [1 ]
Chawla, Sanjeev [1 ]
Brem, Steven [2 ,3 ,4 ]
Mohan, Suyash [1 ,5 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Neurosurg, Philadelphia, PA USA
[3] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA USA
[4] Univ Penn, Glioblastoma Translat Ctr Excellence, Perelman Sch Med, Philadelphia, PA USA
[5] Univ Penn, Perelman Sch Med, Dept Radiol, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
关键词
NEWLY-DIAGNOSED GLIOBLASTOMA; HIGH-GRADE GLIOMAS; PSEUDOPROGRESSION; DIFFUSION; CRITERIA; RECOMMENDATIONS; BEVACIZUMAB; PROGRESSION; PATTERNS; TUMORS;
D O I
10.1158/1078-0432.CCR-23-0009
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The highly aggressive nature of glioblastoma carries a dismal prognosis despite aggressive multimodal therapy. Alternative treatment regimens, such as immunotherapies, are known to intensify the inflammatory response in the treatment field. Follow-up imaging in these scenarios often mimics disease progression on conventional MRI, making accurate evaluation extremely challenging. To this end, revised criteria for assessment of treatment response in high-grade gliomas were successfully proposed by the RANO Working Group to distinguish pseudo -progression from true progression, with intrinsic constraints related to the postcontrast T1-weighted MRI sequence. To address these existing limitations, our group proposes a more objective and quantifiable "treatment agnostic" model, integrat-ing into the RANO criteria advanced multimodal neuroimaging techniques, such as diffusion tensor imaging (DTI), dynamic susceptibility contrast-perfusion weighted imaging (DSC-PWI), dynamic contrast enhanced (DCE)-MRI, MR spectroscopy, and amino acid-based positron emission tomography (PET) imaging tracers, along with artificial intelligence (AI) tools (radiomics, radiogenomics, and radiopathomics) and molecular information to address this complex issue of treatment-related changes versus tumor progression in "real-time", particularly in the early post-treatment window. Our perspective delineates the potential of incorporating multimodal neuroimaging techniques to improve consistency and automation for the assessment of early treatment response in neuro-oncology.
引用
收藏
页码:2588 / 2592
页数:5
相关论文
共 44 条
[21]   Distinguishing Pseudoprogression From True Early Progression in Isocitrate Dehydrogenase Wild-Type Glioblastoma by Interrogating Clinical, Radiological, and Molecular Features [J].
Li, Mingxiao ;
Ren, Xiaohui ;
Dong, Gehong ;
Wang, Jincheng ;
Jiang, Haihui ;
Yang, Chuanwei ;
Zhao, Xuzhe ;
Zhu, Qinghui ;
Cui, Yong ;
Yu, Kefu ;
Lin, Song .
FRONTIERS IN ONCOLOGY, 2021, 11
[22]   Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations [J].
Lin, Alexander ;
Andronesi, Ovidiu ;
Bogner, Wolfgang ;
Choi, In-Young ;
Coello, Eduardo ;
Cudalbu, Cristina ;
Juchem, Christoph ;
Kemp, Graham J. ;
Kreis, Roland ;
Krssak, Martin ;
Lee, Phil ;
Maudsley, Andrew A. ;
Meyerspeer, Martin ;
Mlynarik, Vladamir ;
Near, Jamie ;
Oz, Gulin ;
Peek, Aimie L. ;
Puts, Nicolaas A. ;
Ratai, Eva-Maria ;
Tkac, Ivan ;
Mullins, Paul G. .
NMR IN BIOMEDICINE, 2021, 34 (05)
[23]  
Mohan Suyash, 2021, Surg Neurol Int, V12, P337, DOI [10.25259/sni_353_2021, 10.25259/SNI_353_2021]
[24]   Bevacizumab for recurrent malignant gliomas - Efficacy, toxicity, and patterns of recurrence [J].
Norden, A. D. ;
Young, G. S. ;
Setayesh, K. ;
Muzikansky, A. ;
Klufas, R. ;
Ross, G. L. ;
Ciampa, A. S. ;
Ebbeling, L. G. ;
Levy, B. ;
Drappatz, J. ;
Kesari, S. ;
Wen, P. Y. .
NEUROLOGY, 2008, 70 (10) :779-787
[25]   Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma [J].
Nowosielski, Martha ;
Wiestler, Benedikt ;
Goebel, Georg ;
Hutterer, Markus ;
Schlemmer, Heinz P. ;
Stockhammer, Guenther ;
Wick, Wolfgang ;
Bendszus, Martin ;
Radbruch, Alexander .
NEUROLOGY, 2014, 82 (19) :1684-1692
[26]   Immunotherapy response assessment in neuro-oncology: a report of the RANO working group [J].
Okada, Hideho ;
Weller, Michael ;
Huang, Raymond ;
Finocchiaro, Gaetano ;
Gilbert, Mark R. ;
Wick, Wolfgang ;
Ellingson, Benjamin M. ;
Hashimoto, Naoya ;
Pollack, Ian F. ;
Brandes, Alba A. ;
Franceschi, Enrico ;
Herold-Mende, Christel ;
Nayak, Lakshmi ;
Panigrahy, Ashok ;
Pope, Whitney B. ;
Prins, Robert ;
Sampson, John H. ;
Wen, Patrick Y. ;
Reardon, David A. .
LANCET ONCOLOGY, 2015, 16 (15) :E534-E542
[27]   Longer-term (≥2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: a systematic review and meta-analysis [J].
Poon, Michael T. C. ;
Sudlow, Cathie L. M. ;
Figueroa, Jonine D. ;
Brennan, Paul M. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[28]   Diffusion and Perfusion MRI to Differentiate Treatment-Related Changes Including Pseudoprogression from Recurrent Tumors in High-Grade Gliomas with Histopathologic Evidence [J].
Prager, A. J. ;
Martinez, N. ;
Beal, K. ;
Omuro, A. ;
Zhang, Z. ;
Young, R. J. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (05) :877-885
[29]   Bidimensional Measurements in Brain Tumors: Assessment of Interobserver Variability [J].
Provenzale, James M. ;
Ison, Claro ;
DeLong, David .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (06) :W515-W522
[30]   Emerging Applications of Artificial Intelligence in Neuro-Oncology [J].
Rudie, Jeffrey D. ;
Rauschecker, Andreas M. ;
Bryan, R. Nick ;
Davatzikos, Christos ;
Mohan, Suyash .
RADIOLOGY, 2019, 290 (03) :607-618