Taming Glioblastoma in "Real Time": Integrating Multimodal Advanced Neuroimaging/AI Tools Towards Creating a Robust and Therapy Agnostic Model for Response Assessment in Neuro-Oncology

被引:11
作者
de Godoy, Laiz Laura [1 ]
Chawla, Sanjeev [1 ]
Brem, Steven [2 ,3 ,4 ]
Mohan, Suyash [1 ,5 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Neurosurg, Philadelphia, PA USA
[3] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA USA
[4] Univ Penn, Glioblastoma Translat Ctr Excellence, Perelman Sch Med, Philadelphia, PA USA
[5] Univ Penn, Perelman Sch Med, Dept Radiol, 3400 Civ Ctr Blvd, Philadelphia, PA 19104 USA
关键词
NEWLY-DIAGNOSED GLIOBLASTOMA; HIGH-GRADE GLIOMAS; PSEUDOPROGRESSION; DIFFUSION; CRITERIA; RECOMMENDATIONS; BEVACIZUMAB; PROGRESSION; PATTERNS; TUMORS;
D O I
10.1158/1078-0432.CCR-23-0009
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The highly aggressive nature of glioblastoma carries a dismal prognosis despite aggressive multimodal therapy. Alternative treatment regimens, such as immunotherapies, are known to intensify the inflammatory response in the treatment field. Follow-up imaging in these scenarios often mimics disease progression on conventional MRI, making accurate evaluation extremely challenging. To this end, revised criteria for assessment of treatment response in high-grade gliomas were successfully proposed by the RANO Working Group to distinguish pseudo -progression from true progression, with intrinsic constraints related to the postcontrast T1-weighted MRI sequence. To address these existing limitations, our group proposes a more objective and quantifiable "treatment agnostic" model, integrat-ing into the RANO criteria advanced multimodal neuroimaging techniques, such as diffusion tensor imaging (DTI), dynamic susceptibility contrast-perfusion weighted imaging (DSC-PWI), dynamic contrast enhanced (DCE)-MRI, MR spectroscopy, and amino acid-based positron emission tomography (PET) imaging tracers, along with artificial intelligence (AI) tools (radiomics, radiogenomics, and radiopathomics) and molecular information to address this complex issue of treatment-related changes versus tumor progression in "real-time", particularly in the early post-treatment window. Our perspective delineates the potential of incorporating multimodal neuroimaging techniques to improve consistency and automation for the assessment of early treatment response in neuro-oncology.
引用
收藏
页码:2588 / 2592
页数:5
相关论文
共 44 条
[1]   Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma [J].
Akbari, Hamed ;
Rathore, Saima ;
Bakas, Spyridon ;
Nasrallah, MacLean P. ;
Shukla, Gaurav ;
Mamourian, Elizabeth ;
Rozycki, Martin ;
Bagley, Stephen J. ;
Rudie, Jeffrey D. ;
Flanders, Adam E. ;
Dicker, Adam P. ;
Desai, Arati S. ;
O'Rourke, Donald M. ;
Brem, Steven ;
Lustig, Robert ;
Mohan, Suyash ;
Wolf, Ronald L. ;
Bilello, Michel ;
Martinez-Lage, Maria ;
Davatzikos, Christos .
CANCER, 2020, 126 (11) :2625-2636
[2]   Imaging Biomarkers of Glioblastoma Treatment Response: A Systematic Review and Meta-Analysis of Recent Machine Learning Studies [J].
Booth, Thomas C. ;
Grzeda, Mariusz ;
Chelliah, Alysha ;
Roman, Andrei ;
Al Busaidi, Ayisha ;
Dragos, Carmen ;
Shuaib, Haris ;
Luis, Aysha ;
Mirchandani, Ayesha ;
Alparslan, Burcu ;
Mansoor, Nina ;
Lavrador, Jose ;
Vergani, Francesco ;
Ashkan, Keyoumars ;
Modat, Marc ;
Ourselin, Sebastien .
FRONTIERS IN ONCOLOGY, 2022, 12
[3]   Longitudinal DSC-MRI for Distinguishing Tumor Recurrence From Pseudoprogression in Patients With a High-grade Glioma [J].
Boxerman, Jerrold L. ;
Ellingson, Benjamin M. ;
Jeyapalan, Suriya ;
Elinzano, Heinrich ;
Harris, Robert J. ;
Rogg, Jeffrey M. ;
Pope, Whitney B. ;
Safran, Howard .
AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2017, 40 (03) :228-234
[4]   Radiographic patterns of relapse in glioblastoma [J].
Chamberlain, Marc C. .
JOURNAL OF NEURO-ONCOLOGY, 2011, 101 (02) :319-323
[5]   Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma [J].
Chawla, Sanjeev ;
Bukhari, Sultan ;
Afridi, Omar M. ;
Wang, Sumei ;
Yadav, Santosh K. ;
Akbari, Hamed ;
Verma, Gaurav ;
Nath, Kavindra ;
Haris, Mohammad ;
Bagley, Stephen ;
Davatzikos, Christos ;
Loevner, Laurie A. ;
Mohan, Suyash .
NMR IN BIOMEDICINE, 2022, 35 (07)
[6]   Physiological Imaging Methods for Evaluating Response to Immunotherapies in Glioblastomas [J].
Chawla, Sanjeev ;
Shehu, Vanessa ;
Gupta, Pradeep K. ;
Nath, Kavindra ;
Poptani, Harish .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)
[7]  
Chukwueke Ugonma N, 2019, CNS Oncol, V8, pCNS28, DOI 10.2217/cns-2018-0007
[8]   AI-based prognostic imaging biomarkers for precision neuro-oncology: the ReSPOND consortium [J].
Davatzikos, Christos ;
Barnholtz-Sloan, Jill S. ;
Bakas, Spyridon ;
Colen, Rivka ;
Mahajan, Abhishek ;
Balana Quintero, Carmen ;
Capellades Font, Jaume ;
Puig, Josep ;
Jain, Rajan ;
Sloan, Andrew E. ;
Badve, Chaitra ;
Marcus, Daniel S. ;
Choi, Yoon Seong ;
Lee, Seung-Koo ;
Chang, Jong Hee ;
Poisson, Laila M. ;
Griffith, Brent ;
Dicker, Adam P. ;
Flanders, Adam E. ;
Booth, Thomas C. ;
Rathore, Saima ;
Akbari, Hamed ;
Sako, Chiharu ;
Bilello, Michel ;
Shukla, Gaurav ;
Kazerooni, Anahita Fathi ;
Brem, Steven ;
Lustig, Robert ;
Mohan, Suyash ;
Bagley, Stephen ;
Nasrallah, MacLean ;
O'Rourke, Donald M. .
NEURO-ONCOLOGY, 2020, 22 (06) :886-888
[9]  
Dempsey MF, 2005, AM J NEURORADIOL, V26, P770
[10]   Approaches to PET Imaging of Glioblastoma [J].
Drake, Lindsey R. ;
Hillmer, Ansel T. ;
Cai, Zhengxin .
MOLECULES, 2020, 25 (03)