Glaucoma Detection in Retinal Fundus Images Based on Deep Transfer Learning and Fuzzy Aggregation Operators

被引:2
作者
Ali, Mohammed Yousef Salem [1 ]
Jabreel, Mohammad [2 ]
Valls, Aida [3 ]
Baget, Marc [4 ,5 ]
Abdel-Nasser, Mohamed [6 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Tarragona 43007, Spain
[2] Gaist Solut Ltd, Skipton, England
[3] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Tarragona 43007, Catalonia, Spain
[4] Hosp Univ St Joan, Ophthalmol Serv, Inst Invest Sanitaria Pere Virgili, Reus 43204, Spain
[5] Univ Rovira & Virgili, Reus 43204, Spain
[6] Aswan Univ, Dept Elect Engn, Aswan 81528, Egypt
关键词
Glaucoma; fundus image; deep learning; transfer learning; fuzzy aggregation operators; OPTIC DISC; CUP; SEGMENTATION; NETWORK;
D O I
10.1142/S0218213023400018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The early diagnosis of the glaucoma disease in the eye is crucial to avoid vision loss. This paper proposes an efficient computer-aided detection (CAD) system for diagnosing glaucoma based on fundus images, deep transfer learning and fuzzy aggregation operators. Specifically, the proposed CAD system includes three stages: (1) Detection of the region of interest of the optic disc using an efficient deep learning network, (2) Classification of images based on different pre-trained deep convolutional neural networks and support vector machines, and (3) Use of fuzzy aggregation operators to fuse the predictions of glaucoma classifiers. We used three popular yet robust aggregators: ordered weighted averaging (OWA) operator, weighted power mean (WPM), and exponential mean (EXM). We assessed the efficacy of the proposed glaucoma CAD system on three public datasets: DRISHTI-GS1, RIM-ONE, and REFUGE. The proposed conjunctive OWA aggregation method (Conj-OWA) achieves the best glaucoma classification results. Specifically, it achieves accuracy values of 90.2%, 97.8%, and 94.3% and area under the curve (AUC) values of 95.3%, 99.8%, and 96.2%, respectively, on DRISHTI-GS1, RIM-ONE, and REFUGE databases.
引用
收藏
页数:28
相关论文
共 49 条
[1]   The Impact of Pixel Resolution, Integration Scale, Preprocessing, and Feature Normalization on Texture Analysis for Mass Classification in Mammograms [J].
Abdel-Nasser, Mohamed ;
Melendez, Jaime ;
Moreno, Antonio ;
Puig, Domenec .
INTERNATIONAL JOURNAL OF OPTICS, 2016, 2016
[2]   Identification of glaucoma from fundus images using deep learning techniques [J].
Ajitha, S. ;
Akkara, John D. ;
Judy, M., V .
INDIAN JOURNAL OF OPHTHALMOLOGY, 2021, 69 (10) :2702-2709
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Glaucoma Classification with a Fusion of Segmentation and Image-based Features [J].
Chakravarty, Arunava ;
Sivaswamy, Jayanthi .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :689-692
[5]  
Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[8]   Dual Machine-Learning System to Aid Glaucoma Diagnosis Using Disc and Cup Feature Extraction [J].
Civit-Masot, Javier ;
Dominguez-Morales, Manuel J. ;
Vicente-Diaz, Saturnino ;
Civit, Anton .
IEEE ACCESS, 2020, 8 :127519-127529
[9]  
Deepa N., 2021, 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), P536, DOI 10.1109/ICACCS51430.2021.9441817
[10]   CNNs for automatic glaucoma assessment using fundus images: an extensive validation [J].
Diaz-Pinto, Andres ;
Morales, Sandra ;
Naranjo, Valery ;
Koehler, Thomas ;
Mossi, Jose M. ;
Navea, Amparo .
BIOMEDICAL ENGINEERING ONLINE, 2019, 18 (1)