A spatiotemporal correlation deep learning network for brain penumbra disease

被引:7
作者
Liu, Liangliang [1 ]
Zhang, Pei [1 ]
Liang, Gongbo [2 ]
Xiong, Shufeng [1 ]
Wang, Jianxin [3 ]
Zheng, Guang [1 ]
机构
[1] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450046, Henan, Peoples R China
[2] Texas A&M Univ, Dept Comp & Cyber Secur, San Antonio, TX 78224 USA
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain penumbra; Convolutional neural networks; Adjacent slides; Convolutional long short-term memory; STROKE LESION SEGMENTATION; ISCHEMIC PENUMBRA; CLASSIFICATION; ALGORITHM; RECOVERY; TISSUE;
D O I
10.1016/j.neucom.2022.11.041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain penumbra is a critical condition that is closely related to stroke. Thus, there is high demand for fast and accurate segmentation of penumbra tissue in magnetic resonance images. However, most convolu-tional neural networks (CNNs) focus on learning contextual semantic information from two-dimensional imaging slides, ignoring the spatiotemporal correlations among adjacent slides. Here, we propose an encoder-decoder network (ConvLSTM-Net) with a specifically convolutional long short-term memory skip connection to extract the spatiotemporal correlations of features of adjacent slices in a non-linear manner. A mixed loss function is also used to improve the segmentation performance. We test the pro-posed method on the penumbra segmentation challenge and obtain an average Dice score over 80%, indi-cating that its performance is superior to or comparable with that of state-of-the-art segmentation methods. A mixed loss function provides positive support for the stability of model training. In addition, we visualize two representative samples to improve the interpretability of the results of ConvLSTM-Net.(c) 2022 Published by Elsevier B.V.
引用
收藏
页码:274 / 283
页数:10
相关论文
共 56 条
[1]   MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation [J].
Ahmad, Parvez ;
Jin, Hai ;
Alroobaea, Roobaea ;
Qamar, Saqib ;
Zheng, Ran ;
Alnajjar, Fady ;
Aboudi, Fathia .
IEEE ACCESS, 2021, 9 :148384-148408
[2]   Predicting spontaneous early neurological recovery after acute ischemic stroke [J].
Arboix, A ;
García-Eroles, L ;
Comes, E ;
Oliveres, M ;
Balcells, M ;
Pacheco, G ;
Targa, C .
EUROPEAN JOURNAL OF NEUROLOGY, 2003, 10 (04) :429-435
[3]  
Carmo D, 2020, Arxiv, DOI arXiv:1902.04487
[4]   VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images [J].
Chen, Hao ;
Dou, Qi ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
NEUROIMAGE, 2018, 170 :446-455
[5]   Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks [J].
Chen, Liang ;
Bentley, Paul ;
Rueckert, Daniel .
NEUROIMAGE-CLINICAL, 2017, 15 :633-643
[6]   HADAMARD FUNCTIONS OF INVERSE M-MATRICES [J].
Dellacherie, Claude ;
Martinez, Servet ;
San Martin, Jaime .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) :289-315
[7]   Long-Term Recurrent Convolutional Networks for Visual Recognition and Description [J].
Donahue, Jeff ;
Hendricks, Lisa Anne ;
Rohrbach, Marcus ;
Venugopalan, Subhashini ;
Guadarrama, Sergio ;
Saenko, Kate ;
Darrell, Trevor .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (04) :677-691
[8]   State-of-the-Art Methods for Brain Tissue Segmentation: A Review [J].
Dora L. ;
Agrawal S. ;
Panda R. ;
Abraham A. .
Panda, Rutuparna (r-ppanda@yahoo.co.in), 2017, Institute of Electrical and Electronics Engineers Inc., United States (10) :235-249
[9]   Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks [J].
Dou, Qi ;
Chen, Hao ;
Yu, Lequan ;
Zhao, Lei ;
Qin, Jing ;
Wang, Defeng ;
Mok, Vincent C. T. ;
Shi, Lin ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1182-1195
[10]   Current concepts of the ischemic penumbra - Introduction [J].
Fisher, M ;
Ginsberg, M .
STROKE, 2004, 35 (11) :2657-2658