共 117 条
Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model
被引:2
作者:
Curran, Colleen S.
[1
]
Cui, Xizhong
[2
]
Li, Yan
[2
]
Jeakle, Mark
[2
]
Sun, Junfeng
[2
]
Demirkale, Cumhur Y.
[2
]
Minkove, Samuel
[2
]
Hoffmann, Victoria
[3
]
Dhamapurkar, Rhea
[2
]
Chumbris, Symya
[4
]
Bolyard, Cameron
[4
]
Iheanacho, Akunna
[4
]
Eichacker, Peter Q.
[2
]
Torabi-Parizi, Parizad
[1
,2
]
机构:
[1] NHLBI, NIH, Bethesda, MD 20892 USA
[2] NIH, Crit Care Med Dept, Clin Ctr, Bethesda, MD 20892 USA
[3] NIH, Div Vet Resources, Bethesda, MD USA
[4] Texcell North Amer Inc, Frederick, MD USA
基金:
美国国家卫生研究院;
关键词:
pneumonia;
MHV-1;
COVID-19;
immunotherapy;
PD-L1;
CD66a;
ACE;
ACE2;
ANGIOTENSIN-CONVERTING ENZYME;
ACE2;
EXPRESSION;
RECEPTOR;
CELLS;
COVID-19;
HYPOXIA;
CEACAM1;
MUSCLE;
MATRILIN-2;
CULTURES;
D O I:
10.3389/fimmu.2023.1308358
中图分类号:
R392 [医学免疫学];
Q939.91 [免疫学];
学科分类号:
100102 ;
摘要:
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2).Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production.Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-gamma but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model.Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
引用
收藏
页数:21
相关论文