Diffused Convolutional Neural Network for Hyperspectral Image Super-Resolution

被引:0
|
作者
Jia, Sen [1 ,2 ]
Zhu, Shuangzhao [1 ,2 ]
Wang, Zhihao [1 ,2 ]
Xu, Meng [1 ,2 ]
Wang, Weixi [3 ]
Guo, Yujuan [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Guangdong Hong Kong Macau Joint Lab Smart Cities, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Key Lab Geoenvironm Monitoring Coastal Zone, Minist Nat Resources, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Guangdong Hong Kong Macau Joint Lab Smart Cities, Shenzhen 518060, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); feature fusion; hyperspectral image (HSI); image super-resolution (SR); RESOLUTION; FUSION;
D O I
10.1109/TGRS.2023.3250640
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the rapid development of deep convolutional neural networks (CNNs), super-resolution (SR) in hyperspectral image (HSI) has achieved good results. Current methods generally use 2-D convolution for feature extraction, but they cannot effectively extract spectral information. Although 3-D convolution can better characterize feature structure of HSI, it will lead to parameter redundancy, model complexity, and severe memory shortage. To address the above problems, we propose a new HSI SR method, named diffused CNN (DCNN). Specifically, spectral convolutions have been added into the enhanced convolutional neural (ECN) block, and a series of spectral convolutions are introduced in the residual network to learn features in the channel direction of different depths. Furthermore, histogram of oriented gradient (HOG) and local binary pattern (LBP) are used to retain the shape and texture information of the image, respectively, which can well represent the spatial structure of the object. To effectively make use of the extracted shallow and deep features, a feature fusion strategy is used to reinforce the reconstruction efficiency. Besides, an image enhancement module has been developed to diffuse the SR image into the image space. Extensive evaluations and comparisons show that our DCNN approach can not only recover the HSI data with richer details but also achieve superiority over several state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hyperspectral image super-resolution using deep convolutional neural network
    Li, Yunsong
    Hu, Jing
    Zhao, Xi
    Xie, Weiying
    Li, JiaoJiao
    NEUROCOMPUTING, 2017, 266 : 29 - 41
  • [2] Hyperspectral image super-resolution using recursive densely convolutional neural network with spatial constraint strategy
    Zhao, Jianwei
    Huang, Taoye
    Zhou, Zhenghua
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18) : 14471 - 14481
  • [3] Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Zhang, Yifan
    Wan, Shuai
    Du, Qian
    REMOTE SENSING, 2017, 9 (11)
  • [4] Hyperspectral Image Super-Resolution with 1D-2D Attentional Convolutional Neural Network
    Li, Jiaojiao
    Cui, Ruxing
    Li, Bo
    Song, Rui
    Li, Yunsong
    Du, Qian
    REMOTE SENSING, 2019, 11 (23)
  • [5] Hyperspectral Image Super-Resolution Based on Spatial Correlation-Regularized Unmixing Convolutional Neural Network
    Lu, Xiaochen
    Yang, Dezheng
    Zhang, Junping
    Jia, Fengde
    REMOTE SENSING, 2021, 13 (20)
  • [6] Modified SSR-NET: A Shallow Convolutional Neural Network for Efficient Hyperspectral Image Super-Resolution
    Avagyan, Shushik
    Katkovnik, Vladimir
    Egiazarian, Karen
    FRONTIERS IN REMOTE SENSING, 2022, 3
  • [7] Hyperspectral Image Super-Resolution via Deep Spatiospectral Attention Convolutional Neural Networks
    Hu, Jin-Fan
    Huang, Ting-Zhu
    Deng, Liang-Jian
    Jiang, Tai-Xiang
    Vivone, Gemine
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7251 - 7265
  • [8] Symmetrical Feature Propagation Network for Hyperspectral Image Super-Resolution
    Li, Qiang
    Gong, Maoguo
    Yuan, Yuan
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244
  • [10] StructureColor Preserving Network for Hyperspectral Image Super-Resolution
    Pan, Bin
    Qu, Qiaoying
    Xu, Xia
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60