Abel universal functions

被引:0
作者
Charpentier, Stephane [1 ]
Mouze, Augustin [2 ]
机构
[1] Aix Marseille Univ, Inst Math, UMR 7373, 39 rue F Joliot Curie, F-13453 Marseille 13, France
[2] Univ Lille, Cent Lille Lab Paul Painleve, UMR 8524, F-59000 Lille, France
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2023年 / 75卷 / 06期
关键词
Universal functions; boundary behavior; universal sequence of operators; TAYLOR-SERIES; BOUNDARY-BEHAVIOR; HYPERCYCLIC OPERATORS; FAMILIES;
D O I
10.4153/S0008414X22000578
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a sequence rho = (r(n))(n) is an element of [0,1) tending to 1, we consider the set U-A(D, rho) of Abel universal functions consisting of holomorphic functions f in the open unit disk D such that for any compact set K included in the unit circle T, different from T, the set {z ? f (r(n)center dot)|(K) : n is an element of N} is dense in the space C(K) of continuous functions on K. It is known that the set U-A(D, rho) is residual in H(D). We prove that it does not coincide with any other classical sets of universal holomorphic functions. In particular, it is not even comparable in terms of inclusion to the set of holomorphic functions whose Taylor polynomials at 0 are dense in C(K) for any compact set K subset of T different from T. Moreover, we prove that the class of Abel universal functions is not invariant under the action of the differentiation operator. Finally, an Abel universal function can be viewed as a universal vector of the sequence of dilation operators T-n : f ? f (r(n)center dot) acting on H(D). Thus, we study the dynamical properties of (T-n)(n) such as the multiuniversality and the (common) frequent universality. All the proofs are constructive.
引用
收藏
页码:1957 / 1985
页数:29
相关论文
共 42 条
  • [1] FREQUENTLY DENSE HARMONIC FUNCTIONS AND UNIVERSAL MARTINGALES ON TREES
    Abakumov, Evgeny
    Nestoridis, Vassili
    Picardello, Massimo A.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 1905 - 1918
  • [2] Abstract theory of universal series and applications
    Bayart, F.
    Grosse-Erdmann, K. -G.
    Nestoridis, V.
    Papadimitropoulos, C.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 : 417 - 463
  • [3] Universal radial limits of holomorphic functions
    Bayart, F
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2005, 47 : 261 - 267
  • [4] Bayart F., 2006, REV MAT COMPLUT, V19, P235, DOI DOI 10.5209/rev_REMA.2006.v19.n1.16662
  • [5] Frequently hypercyclic operators
    Bayart, Frederic
    Grivaux, Sophie
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) : 5083 - 5117
  • [6] Common Hypercyclic Vectors for High-Dimensional Families of Operators
    Bayart, Frederic
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (21) : 6512 - 6552
  • [7] Bayart F, 2009, CAMB TRACT MATH, P1
  • [8] Maximal cluster sets along arbitrary curves
    Bernal-Gonádlez, L
    Calderón-Moreno, MC
    Prado-Bassas, JA
    [J]. JOURNAL OF APPROXIMATION THEORY, 2004, 129 (02) : 207 - 216
  • [9] Frequently hypercyclic operators and vectors
    Bonilla, A.
    Grosse-Erdmann, K. -G.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 383 - 404
  • [10] Bourdon PS, 2003, INDIANA U MATH J, V52, P811