Superior initial Coulombic efficiency and areal capacity of hard carbon anode enabled by graphite-assisted carbonization for sodium-ion battery

被引:17
作者
Du, Yuxuan [1 ,2 ]
Qiu, Yuqian [1 ,2 ]
Zhuang, Rong [1 ,2 ]
Jing, Xiaohan [1 ,2 ]
Liu, Dengke [1 ,2 ]
Peng, Xu [1 ,2 ]
Yan, Long [3 ]
Xu, Fei [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Ctr Nano Energy Mat, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Shaanxi Joint Lab Graphene NPU, Xian 710072, Peoples R China
[3] Yulin Univ, Sch Chem & Chem Engn, Shaanxi Key Lab Low Metamorph Coal Clean Utilizat, Yulin 719000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hard carbon; Self-supporting; Initial Coulombic efficiency; Areal capacity; Sodium-ion batteries; CYCLE LIFE; ELECTRODES; BINDER; CELLULOSE; INSERTION; MODEL;
D O I
10.1016/j.carbon.2024.118929
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbons are perceived as promising anode materials in sodium-ion batteries, while their practical implementation is largely impeded by the insufficient initial Coulombic efficiency (ICE). Hard carbons with selfsupporting architecture are intriguing to enhance ICE owing to the omission of binder and conductive agent; whereas elaborate architecture and microstructure design are still required to further raise the ICE to the level of commercial graphite in lithium-ion batteries, especially under high areal capacity. Herein, we propose a graphite-assisted pressurization strategy during carbonization to achieve remarkable ICE and high areal capacity in resulting self-supporting cellulose tissue derived hard carbon anode. The intimate contact of graphite plate enables suitable local ordering of pseudo-graphitic nanodomains with low intrinsic defects, responsible for enhanced ICE. While the pressure-reinforced dense yet self-interwoven fibrous networks render high areal capacity. Consequently, the as-prepared self-supporting hard carbon anode displays remarkable ICE to 95% and areal capacity of 2.4 mAh cm-2, far exceeding the reported value of less than 0.8 mAh cm-2. Meanwhile, the rate and durability are not scarified under such superior ICE due to the well-manipulated pseudo-graphitic nanodomains and porous fibrous networks. The practicality is further demonstrated in coin-type and pouch-type full cells delivering high capacity and long-term stability. Our finding offers an impetus for the development of high ICE and areal capacity for sodium-ion battery anode.
引用
收藏
页数:8
相关论文
共 57 条
[1]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[2]   The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J].
Bauer, Alexander ;
Song, Jie ;
Vail, Sean ;
Pan, Wei ;
Barker, Jerry ;
Lu, Yuhao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[3]   Self-supported binder-free hard carbon electrodes for sodium-ion batteries: insights into their sodium storage mechanisms [J].
Beda, Adrian ;
Villevieille, Claire ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Ghimbeu, Camelia Matei .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (11) :5558-5571
[4]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[5]   Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization [J].
Chen, Dequan ;
Zhang, Wen ;
Luo, Kangying ;
Song, Yang ;
Zhong, Yanjun ;
Liu, Yuxia ;
Wang, Gongke ;
Zhong, Benhe ;
Wu, Zhenguo ;
Guo, Xiaodong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2244-2262
[6]   Understanding of the sodium storage mechanism in hard carbon anodes [J].
Chen, Xiaoyang ;
Liu, Changyu ;
Fang, Yongjin ;
Ai, Xinping ;
Zhong, Faping ;
Yang, Hanxi ;
Cao, Yuliang .
CARBON ENERGY, 2022, 4 (06) :1133-1150
[7]   Toward High-Areal-Capacity Electrodes for Lithium and Sodium Ion Batteries [J].
Chen, Yijun ;
Zhao, Bo ;
Yang, Yuan ;
Cao, Anyuan .
ADVANCED ENERGY MATERIALS, 2022, 12 (44)
[8]   Pyroprotein-Derived Hard Carbon Fibers Exhibiting Exceptionally High Plateau Capacities for Sodium Ion Batteries [J].
Choi, Jaewon ;
Lee, Min Eui ;
Lee, Sungho ;
Jin, Hyoung-Joon ;
Yun, Young Soo .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (02) :1185-1191
[9]   Synthesis of hard carbon from argan shells for Na-ion batteries [J].
Dahbi, Mouad ;
Kiso, Manami ;
Kubota, Kei ;
Horiba, Tatsuo ;
Chafik, Tarik ;
Hida, Kazuo ;
Matsuyama, Takashi ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (20) :9917-9928
[10]   Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries [J].
Dahbi, Mouad ;
Nakano, Takeshi ;
Yabuuchi, Naoaki ;
Ishikawa, Toru ;
Kubota, Kei ;
Fukunishi, Mika ;
Shibahara, Sota ;
Son, Jin-Young ;
Cui, Yi-Tao ;
Oji, Hiroshi ;
Komaba, Shinichi .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 44 :66-69