Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease

被引:3
作者
Guo, Weifeng [1 ,2 ]
Zhao, Shihai [1 ,2 ]
Xu, Haijia [3 ,4 ]
He, Wei [5 ]
Yin, Lekang [1 ,2 ]
Yao, Zhifeng [3 ]
Xu, Zhihan [6 ]
Jin, Hang [1 ,2 ]
Wu, Dong [1 ,2 ]
Li, Chenguang [3 ]
Yang, Shan [1 ]
Zeng, Mengsu [1 ,2 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Dept Radiol, 180 Fenglin Rd, Shanghai 200032, Peoples R China
[2] Shanghai Geriatr Med Ctr, Dept Radiol, 2560 Chunshen Rd, Shanghai 201104, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Dept Cardiol, Shanghai 200032, Peoples R China
[4] Fudan Univ, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[5] Fudan Univ, Dept Vasc Surg, Zhongshan Hosp, Shanghai 200032, Peoples R China
[6] Siemens Healthineers China, Shanghai, Peoples R China
关键词
Coronary artery disease; Multidetector computed tomography; Coronary angiography; Myocardial perfusion imaging; Fractional flow reserve (myocardial); CARDIOVASCULAR MAGNETIC-RESONANCE; COMPUTED-TOMOGRAPHY ANGIOGRAPHY; MYOCARDIAL-PERFUSION; PROGNOSTIC VALUE; PERFORMANCE; STENOSES;
D O I
10.1007/s00330-024-10650-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To compare the diagnostic performance of machine learning (ML)-based computed tomography-derived fractional flow reserve (CT-FFR) and cardiac magnetic resonance (MR) perfusion mapping for functional assessment of coronary stenosis. Methods Between October 2020 and March 2022, consecutive participants with stable coronary artery disease (CAD) were prospectively enrolled and underwent coronary CTA, cardiac MR, and invasive fractional flow reserve (FFR) within 2 weeks. Cardiac MR perfusion analysis was quantified by stress myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). Hemodynamically significant stenosis was defined as FFR <= 0.8 or > 90% stenosis on invasive coronary angiography (ICA). The diagnostic performance of CT-FFR, MBF, and MPR was compared, using invasive FFR as a reference. Results The study protocol was completed in 110 participants (mean age, 62 years +/- 8; 73 men), and hemodynamically significant stenosis was detected in 36 (33%). Among the quantitative perfusion indices, MPR had the largest area under receiver operating characteristic curve (AUC) (0.90) for identifying hemodynamically significant stenosis, which is in comparison with ML-based CT-FFR on the vessel level (AUC 0.89, p = 0.71), with comparable sensitivity (89% vs 79%, p = 0.20), specificity (87% vs 84%, p = 0.48), and accuracy (88% vs 83%, p = 0.24). However, MPR outperformed ML-based CT-FFR on the patient level (AUC 0.96 vs 0.86, p = 0.03), with improved specificity (95% vs 82%, p = 0.01) and accuracy (95% vs 81%, p < 0.01). Conclusion ML-based CT-FFR and quantitative cardiac MR showed comparable diagnostic performance in detecting vessel-specific hemodynamically significant stenosis, whereas quantitative perfusion mapping had a favorable performance in per-patient analysis.
引用
收藏
页码:5654 / 5665
页数:12
相关论文
共 32 条
[11]  
Hoffmann U, 2017, CIRCULATION, V135, P2320, DOI 10.1161/CIRCULATIONAHA.116.024360
[12]   Diagnostic Performance of Fully Automated Pixel-Wise Quantitative Myocardial Perfusion Imaging by Cardiovascular Magnetic Resonance [J].
Hsu, Li-Yueh ;
Jacobs, Matthew ;
Benovoy, Mitchel ;
Ta, Allison D. ;
Conn, Hannah M. ;
Winkler, Susanne ;
Greve, Anders M. ;
Chen, Marcus Y. ;
Shanbhag, Sujata M. ;
Bandettini, W. Patricia ;
Arai, Andrew E. .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (05) :697-707
[13]   Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance [J].
Ishida, Masaki ;
Schuster, Andreas ;
Morton, Geraint ;
Chiribiri, Amedeo ;
Hussain, Shazia ;
Paul, Matthias ;
Merkle, Nico ;
Steen, Henning ;
Lossnitzer, Dirk ;
Schnackenburg, Bernhard ;
Alfakih, Khaled ;
Plein, Sven ;
Nagel, Eike .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2011, 13
[14]   A machine-learning approach for computation of fractional flow reserve from coronary computed tomography [J].
Itu, Lucian ;
Rapaka, Saikiran ;
Passerini, Tiziano ;
Georgescu, Bogdan ;
Schwemmer, Chris ;
Schoebinger, Max ;
Flohr, Thomas ;
Sharma, Puneet ;
Comaniciu, Dorin .
JOURNAL OF APPLIED PHYSIOLOGY, 2016, 121 (01) :42-52
[15]   Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms Results From the Prospective Multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) Study [J].
Koo, Bon-Kwon ;
Erglis, Andrejs ;
Doh, Joon-Hyung ;
Daniels, David V. ;
Jegere, Sanda ;
Kim, Hyo-Soo ;
Dunning, Allison ;
DeFrance, Tony ;
Lansky, Alexandra ;
Leipsic, Jonathan ;
Min, James K. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 58 (19) :1989-1997
[16]   Assessment of Multivessel Coronary Artery Disease Using Cardiovascular Magnetic Resonance Pixelwise Quantitative Perfusion Mapping [J].
Kotecha, Tushar ;
Chacko, Liza ;
Chehab, Omar ;
O'Reilly, Nanci ;
Martinez-Naharro, Ana ;
Lazari, Jonathan ;
Knott, Kristopher D. ;
Brown, James ;
Knight, Daniel ;
Muthurangu, Vivek ;
Hawkins, Philip ;
Plein, Sven ;
Moon, James C. ;
Xue, Hui ;
Kellman, Peter ;
Rakhit, Roby ;
Patel, Niket ;
Fontana, Marianna .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (12) :2546-2557
[17]   Initial Invasive or Conservative Strategy for Stable Coronary Disease [J].
Maron, David J. ;
Hochman, Judith S. ;
Reynolds, Harmony R. ;
Bangalore, Sripal ;
O'Brien, Sean M. ;
Boden, William E. ;
Chaitman, Bernard R. ;
Senior, Roxy ;
Lopez-Sendon, Jose ;
Alexander, Karen P. ;
Lopes, Renato D. ;
Shaw, Leslee J. ;
Berger, Jeffrey S. ;
Newman, Jonathan D. ;
Sidhu, Mandeep S. ;
Goodman, Shaun G. ;
Ruzyllo, Witold ;
Gosselin, Gilbert ;
Maggioni, Aldo P. ;
White, Harvey D. ;
Bhargava, Balram ;
Min, James K. ;
Mancini, G. B. John ;
Berman, Daniel S. ;
Picard, Michael H. ;
Kwong, Raymond Y. ;
Ali, Ziad A. ;
Mark, Daniel B. ;
Spertus, John A. ;
Krishnan, Mangalath N. ;
Elghamaz, Ahmed ;
Moorthy, Nagaraja ;
Hueb, Whady A. ;
Demkow, Marcin ;
Mavromatis, Kreton ;
Bockeria, Olga ;
Peteiro, Jesus ;
Miller, Todd D. ;
Szwed, Hanna ;
Doerr, Rolf ;
Keltai, Matyas ;
Selvanayagam, Joseph B. ;
Steg, P. Gabriel ;
Held, Claes ;
Kohsaka, Shun ;
Mavromichalis, Stavroula ;
Kirby, Ruth ;
Jeffries, Neal O. ;
Harrell, Frank E., Jr. ;
Rockhold, Frank W. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (15) :1395-1407
[18]   Comprehensive assessment of coronary artery stenoses - Computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina [J].
Meijboom, W. Bob ;
Van Mieghem, Carlos A. G. ;
van Pelt, Niels ;
Weustink, Annick ;
Pugliese, Francesca ;
Mollet, Nico R. ;
Boersma, Eric ;
Regar, Eveline ;
van Geuns, Robert J. ;
de Jaegere, Peter J. ;
Serruys, Patrick W. ;
Krestin, Gabriel P. ;
de Feyter, Pim J. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (08) :636-643
[19]   Diagnostic accuracy and utility of coronary CT angiography with consideration of unevaluable results: A systematic review and multivariate Bayesian random-effects meta-analysis with intention to diagnose [J].
Menke, Jan ;
Kowalski, Joerg .
EUROPEAN RADIOLOGY, 2016, 26 (02) :451-458
[20]   Quantification of Absolute Myocardial Perfusion in Patients With Coronary Artery Disease [J].
Morton, Geraint ;
Chiribiri, Amedeo ;
Ishida, Masaki ;
Hussain, Shazia T. ;
Schuster, Andreas ;
Indermuehle, Andreas ;
Perera, Divaka ;
Knuuti, Juhani ;
Baker, Stacey ;
Hedstroem, Erik ;
Schleyer, Paul ;
O'Doherty, Michael ;
Barrington, Sally ;
Nagel, Eike .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 60 (16) :1546-1555