Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease

被引:2
作者
Guo, Weifeng [1 ,2 ]
Zhao, Shihai [1 ,2 ]
Xu, Haijia [3 ,4 ]
He, Wei [5 ]
Yin, Lekang [1 ,2 ]
Yao, Zhifeng [3 ]
Xu, Zhihan [6 ]
Jin, Hang [1 ,2 ]
Wu, Dong [1 ,2 ]
Li, Chenguang [3 ]
Yang, Shan [1 ]
Zeng, Mengsu [1 ,2 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Dept Radiol, 180 Fenglin Rd, Shanghai 200032, Peoples R China
[2] Shanghai Geriatr Med Ctr, Dept Radiol, 2560 Chunshen Rd, Shanghai 201104, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Dept Cardiol, Shanghai 200032, Peoples R China
[4] Fudan Univ, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[5] Fudan Univ, Dept Vasc Surg, Zhongshan Hosp, Shanghai 200032, Peoples R China
[6] Siemens Healthineers China, Shanghai, Peoples R China
关键词
Coronary artery disease; Multidetector computed tomography; Coronary angiography; Myocardial perfusion imaging; Fractional flow reserve (myocardial); CARDIOVASCULAR MAGNETIC-RESONANCE; COMPUTED-TOMOGRAPHY ANGIOGRAPHY; MYOCARDIAL-PERFUSION; PROGNOSTIC VALUE; PERFORMANCE; STENOSES;
D O I
10.1007/s00330-024-10650-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To compare the diagnostic performance of machine learning (ML)-based computed tomography-derived fractional flow reserve (CT-FFR) and cardiac magnetic resonance (MR) perfusion mapping for functional assessment of coronary stenosis. Methods Between October 2020 and March 2022, consecutive participants with stable coronary artery disease (CAD) were prospectively enrolled and underwent coronary CTA, cardiac MR, and invasive fractional flow reserve (FFR) within 2 weeks. Cardiac MR perfusion analysis was quantified by stress myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). Hemodynamically significant stenosis was defined as FFR <= 0.8 or > 90% stenosis on invasive coronary angiography (ICA). The diagnostic performance of CT-FFR, MBF, and MPR was compared, using invasive FFR as a reference. Results The study protocol was completed in 110 participants (mean age, 62 years +/- 8; 73 men), and hemodynamically significant stenosis was detected in 36 (33%). Among the quantitative perfusion indices, MPR had the largest area under receiver operating characteristic curve (AUC) (0.90) for identifying hemodynamically significant stenosis, which is in comparison with ML-based CT-FFR on the vessel level (AUC 0.89, p = 0.71), with comparable sensitivity (89% vs 79%, p = 0.20), specificity (87% vs 84%, p = 0.48), and accuracy (88% vs 83%, p = 0.24). However, MPR outperformed ML-based CT-FFR on the patient level (AUC 0.96 vs 0.86, p = 0.03), with improved specificity (95% vs 82%, p = 0.01) and accuracy (95% vs 81%, p < 0.01). Conclusion ML-based CT-FFR and quantitative cardiac MR showed comparable diagnostic performance in detecting vessel-specific hemodynamically significant stenosis, whereas quantitative perfusion mapping had a favorable performance in per-patient analysis.
引用
收藏
页码:5654 / 5665
页数:12
相关论文
共 32 条
  • [1] Gadobutrol-Enhanced Cardiac Magnetic Resonance Imaging for Detection of Coronary Artery Disease
    Arai, Andrew E.
    Schulz-Menger, Jeanette
    Berman, Daniel
    Mahrholdt, Heiko
    Han, Yuchi
    Bandettini, W. Patricia
    Gutberlet, Matthias
    Abraham, Arun
    Woodard, Pamela K.
    Selvanayagam, Joseph B.
    McCann, Gerry P.
    Hamilton-Craig, Christian
    Schoepf, U. Joseph
    Tan, Ru San
    Kramer, Christopher M.
    Friedrich, Matthias G.
    Haverstock, Daniel
    Liu, Zheyu
    Brueggenwerth, Guenther
    Bacher-Stier, Claudia
    Santiuste, Marta
    Pennell, Dudley J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (13) : 1536 - 1547
  • [2] Aznaouridis K, 2018, Coronary artery disease, P137
  • [3] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [4] Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium
    Coenen, Adriaan
    Kim, Young-Hak
    Kruk, Mariusz
    Tesche, Christian
    De Geer, Jakob
    Kurata, Akira
    Lubbers, Marisa L.
    Daemen, Joost
    Itu, Lucian
    Rapaka, Saikiran
    Sharma, Puneet
    Schwemmer, Chris
    Persson, Anders
    Schoepf, U. Joseph
    Kepka, Cezary
    Yang, Dong Hyun
    Nieman, Koen
    [J]. CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)
  • [5] Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis
    Danad, Ibrahim
    Szymonifka, Jackie
    Twisk, Josw. R.
    Norgaard, Bjarne L.
    Zarins, Christopher K.
    Knaapen, Paul
    Min, James K.
    [J]. EUROPEAN HEART JOURNAL, 2017, 38 (13) : 991 - +
  • [6] Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study
    Douglas, Pamela S.
    Pontone, Gianluca
    Hlatky, Mark A.
    Patel, Manesh R.
    Norgaard, Bjarne L.
    Byrne, Robert A.
    Curzen, Nick
    Purcell, Ian
    Gutberlet, Matthias
    Rioufol, Gilles
    Hink, Ulrich
    Schuchlenz, Herwig Walter
    Feuchtner, Gudrun
    Gilard, Martine
    Andreini, Daniele
    Jensen, Jesper M.
    Hadamitzky, Martin
    Chiswell, Karen
    Cyr, Derek
    Wilk, Alan
    Wang, Furong
    Rogers, Campbell
    De Bruyne, Bernard
    [J]. EUROPEAN HEART JOURNAL, 2015, 36 (47) : 3359 - 3367
  • [7] Coronary Computed Tomography Angiography vs Functional Stress Testing for Patients With Suspected Coronary Artery Disease A Systematic Review and Meta-analysis
    Foy, Andrew J.
    Dhruva, Sanket S.
    Peterson, Brandon
    Mandrola, John M.
    Morgan, Daniel J.
    Redberg, Rita F.
    [J]. JAMA INTERNAL MEDICINE, 2017, 177 (11) : 1623 - 1631
  • [8] Prognostic Value of Stress CMR Perfusion Imaging in Patients With Reduced Left Ventricular Function
    Ge, Yin
    Antiochos, Panagiotis
    Steel, Kevin
    Bingham, Scott
    Abdullah, Shuaib
    Chen, Yi-Yun
    Mikolich, J. Ronald
    Arai, Andrew E.
    Bandettini, W. Patricia
    Shanbhag, Sujata M.
    Patel, Amit R.
    Farzaneh-Far, Afshin
    Heitner, John F.
    Shenoy, Chetan
    Leung, Steve W.
    Gonzalez, Jorge A.
    Shah, Dipan J.
    Raman, Subha V.
    Ferrari, Victor A.
    Schulz-Menger, Jeanette
    Stuber, Matthias
    Simonetti, Orlando P.
    Kwong, Raymond Y.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2020, 13 (10) : 2132 - 2145
  • [9] Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial
    Greenwood, John P.
    Maredia, Neil
    Younger, John F.
    Brown, Julia M.
    Nixon, Jane
    Everett, Colin C.
    Bijsterveld, Petra
    Ridgway, John P.
    Radjenovic, Aleksandra
    Dickinson, Catherine J.
    Ball, Stephen G.
    Plein, Sven
    [J]. LANCET, 2012, 379 (9814) : 453 - 460
  • [10] Prognostic Value of Vasodilator Stress Cardiac Magnetic Resonance Imaging A Multicenter Study With 48 000 Patient-Years of Follow-up
    Heitner, John F.
    Kim, Raymond J.
    Kim, Han W.
    Klem, Igor
    Shah, Dipan J.
    Debs, Dany
    Farzaneh-Far, Afshin
    Polsani, Venkateshwar
    Kim, Jiwon
    Weinsaft, Jonathan
    Shenoy, Chetan
    Hughes, Andrew
    Cargile, Preston
    Ho, Jean
    Bonow, Robert O.
    Jenista, Elizabeth
    Parker, Michele
    Judd, Robert M.
    [J]. JAMA CARDIOLOGY, 2019, 4 (03) : 256 - 264