Explaining Dark Matter Halo Density Profiles with Neural Networks

被引:10
作者
Lucie-Smith, Luisa [1 ]
Peiris, Hiranya, V [2 ,3 ]
Pontzen, Andrew [2 ]
机构
[1] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany
[2] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[3] Stockholm Univ, AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
CONCENTRATION-REDSHIFT RELATION; LARGE-SCALE STRUCTURE; ACCRETION HISTORY; GALAXY; COLD; UNIVERSAL; INFORMATION; SIMULATION; COSMOLOGY; EVOLUTION;
D O I
10.1103/PhysRevLett.132.031001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use explainable neural networks to connect the evolutionary history of dark matter halos with their density profiles. The network captures independent factors of variation in the density profiles within a lowdimensional representation, which we physically interpret using mutual information. Without any prior knowledge of the halos' evolution, the network recovers the known relation between the early time assembly and the inner profile and discovers that the profile beyond the virial radius is described by a single parameter capturing the most recent mass accretion rate. The results illustrate the potential for machineassisted scientific in datasets.
引用
收藏
页数:7
相关论文
共 70 条
[1]   Splashback in galaxy clusters as a probe of cosmic expansion and gravity [J].
Adhikari, Susmita ;
Sakstein, Jeremy ;
Jain, Bhuvnesh ;
Dalal, Neal ;
Li, Baojiu .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11)
[2]   Splashback in accreting dark matter halos [J].
Adhikari, Susmita ;
Dalal, Neal ;
Chamberlain, Robert T. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (11)
[3]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[4]   Data compression and inference in cosmology with self-supervised machine learning [J].
Akhmetzhanova, Aizhan ;
Mishra-Sharma, Siddharth ;
Dvorkin, Cora .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (03) :7459-7481
[5]  
Alonso D, 2021, Arxiv, DOI arXiv:1809.01669
[6]   Shock and splash: gas and dark matter halo boundaries around ΛCDM galaxy clusters [J].
Aung, Han ;
Nagai, Daisuke ;
Lau, Erwin T. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (02) :2071-2078
[7]   THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM-FIELDS [J].
BARDEEN, JM ;
BOND, JR ;
KAISER, N ;
SZALAY, AS .
ASTROPHYSICAL JOURNAL, 1986, 304 (01) :15-61
[8]  
Bechtol K, 2023, Arxiv, DOI [arXiv:2203.07354, DOI arXiv:2203.07354.v1]
[9]   UNIVERSEMACHINE: The correlation between galaxy growth and dark matter halo assembly from z=0-10 [J].
Behroozi, Peter ;
Wechsler, Risa H. ;
Hearin, Andrew P. ;
Conroy, Charlie .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (03) :3143-3194
[10]   FORMATION OF GALAXIES AND LARGE-SCALE STRUCTURE WITH COLD DARK MATTER [J].
BLUMENTHAL, GR ;
FABER, SM ;
PRIMACK, JR ;
REES, MJ .
NATURE, 1984, 311 (5986) :517-525