A Statistical Study of Arien Sequences for an H.264 Prediction Module Lower Complexity

被引:1
作者
Ammous, Donia [1 ,2 ]
Kessentini, Amina [1 ,3 ]
Kallel, Abdelaziz [1 ,2 ]
Kammoun, Fahmi [1 ]
Masmoudi, Nouri [1 ]
机构
[1] Univ Sfax, Natl Sch Engineers Sfax, Lab Elect & Informat Technol, Circuit & Syst C&S,LR99ES37, Sfax 3038, Tunisia
[2] Technopark Sfax, Digital Res Ctr Sfax, Remote Sensing Smart Agr Team, POB 275, Sfax 3021, Tunisia
[3] Gabes Univ, Higher Inst Comp & Multimedia Gabes, Elect & Telecommun Dept, BP 122, Gabes 6033, Tunisia
关键词
unmanned aerial vehicle; H.264/advanced video codec; prediction module; computing complexity; ALGORITHM;
D O I
10.1520/JTE20230099
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Advanced video coding, or H.264/AVC has been proved to possess a highly complex encoder with a block motion estimation (ME) scheme, entropy coding and a prediction module. Typical applications of unmanned aerial vehicles (UAVs) require real-time video compression. As a result, the current study aims to develop an approach to decrease the computing complexity of the prediction module. The software algorithm that was developed helps basic functions to be achieved in the prediction module. In fact, the user can set up, manage, deploy, and monitor the UAVs in real time. Evaluations obtained in this paper have shown that the adopted approach can significantly improve the execution time of coding and, consequently, the network performance. When comparing the original method of the Laboratory of Electronics and Information's software with the suggested approach, experimental results show that the proposed method had achieved an increase in execution time from 3.544-15.574 %.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[11]  
Bhaskaranand M, 2012, IEEE ICC, P2043, DOI 10.1109/ICC.2012.6364046
[12]   AI for UAV-Assisted IoT Applications: A Comprehensive Review [J].
Cheng, Nan ;
Wu, Shen ;
Wang, Xiucheng ;
Yin, Zhisheng ;
Li, Changle ;
Chen, Wen ;
Chen, Fangjiong .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (16) :14438-14461
[13]   An H.264 Sensor Aided Encoder for Aerial Video Sequences with In-the-Loop Metadata Enhancement [J].
Cicala, Luca ;
Angelino, Cesario Vincenzo ;
Raimondo, Nadir ;
Baccaglini, Enrico ;
Gavelli, Marco .
ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2015, 2015, 9386 :853-863
[14]   Efficient mode decision scheme based on edge detection with Gaussian pulse for Intra-prediction in H.264/AVC [J].
El-Mowafy, M. A. ;
Gharghory, S. M. ;
Abo-Elsoud, M. A. ;
Obayya, M. ;
Allah, M. I. Fath .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (04) :2709-2722
[15]  
Imen Werda, 2022, 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), P258, DOI 10.1109/SSD54932.2022.9955867
[16]   Communication and Control in Collaborative UAVs: Recent Advances and Future Trends [J].
Javaid, Shumaila ;
Saeed, Nasir ;
Qadir, Zakria ;
Fahim, Hamza ;
He, Bin ;
Song, Houbing ;
Bilal, Muhammad .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) :5719-5739
[17]  
Meng KT, 2024, IEEE WIREL COMMUN, V31, P97, DOI [10.1109/MWC.131.2200442, 10.1504/IJAHUC.2023.127763]
[18]   Mesh-based piecewise planar motion compensation and optical flow clustering for ROI coding [J].
Meuel, Holger ;
Munderloh, Marco ;
Reso, Matthias ;
Ostermann, Joern .
APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2015, 4
[19]   Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends [J].
Mohsan, Syed Agha Hassnain ;
Othman, Nawaf Qasem Hamood ;
Li, Yanlong ;
Alsharif, Mohammed H. H. ;
Khan, Muhammad Asghar .
INTELLIGENT SERVICE ROBOTICS, 2023, 16 (01) :109-137
[20]   Low-Complexity Global Motion Estimation for Aerial Vehicles [J].
Ramakrishnan, Nirmala ;
Prakash, Alok ;
Srikanthan, Thambipillai .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :402-410