Automated Production at Scale of Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells, Chondrocytes and Extracellular Vehicles: Towards Real-Time Release

被引:4
|
作者
Herbst, Laura [1 ]
Groten, Ferdinand [1 ]
Murphy, Mary [2 ]
Shaw, Georgina [2 ]
Niessing, Bastian [1 ]
Schmitt, Robert H. [1 ,3 ]
机构
[1] Fraunhofer Inst Prod Technol IPT, D-52074 Aachen, Germany
[2] Univ Galway, Regenerat Med Inst REMEDI, Galway H91 CF50, Ireland
[3] Rhein Westfal TH Aachen, Lab Machine Tools & Prod Engn WZL, D-52062 Aachen, Germany
关键词
stem cells; automation; osteoarthritis; iPSC; iMSC; iCHO; extracellular vesicles; THERAPY; KNEE; OSTEOARTHRITIS; PAIN;
D O I
10.3390/pr11102938
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) are amenable for use in a clinical setting for treatment of osteoarthritis (OA), which remains one of the major illnesses worldwide. Aside from iPSC-derived iMSCs, chondrocytes (iCHO) and extracellular vesicles (EV) are also promising candidates for treatment of OA. Manufacturing and quality control of iPSC-derived therapies is mainly manual and thus highly time consuming and susceptible to human error. A major challenge in translating iPSC-based treatments more widely is the lack of sufficiently scaled production technologies from seeding to fill-and-finish. Formerly, the Autostem platform was developed for the expansion of tissue-derived MSCs at scale in stirred tank bioreactors and subsequent fill-and-finish. Additionally, the StemCellDiscovery platform was developed to handle plate-based cultivation of adherent cells including their microscopic analysis. By combining the existing automation technology of both platforms, all required procedures can be integrated in the AutoCRAT system, designed to handle iPSC expansion, differentiation to iMSCs and iCHOs, pilot scale expansion, and formulation of iMSCs as well as extracellular vesicles and their purification. Furthermore, the platform is equipped with several in-line and at-line assays to determine product quality, purity, and safety. This paper highlights the need for adaptable and modular automation concepts. It also stresses the importance of ensuring safety of generated therapies by incorporating automated release testing and cleaning solutions in automated systems. The adapted platform concepts presented here will help translate these technologies for clinical production at the necessary scale.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells: Ushering of a New Era in Personalized Cell Therapies
    Pal, Rajarshi
    Mariappan, Indumathi
    Velayudhan, Shaji R.
    CURRENT STEM CELL RESEARCH & THERAPY, 2016, 11 (02) : 97 - 98
  • [32] Functional Comparison of Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Cells and Bone Marrow-Derived Mesenchymal Stromal Cells from the Same Donor
    Diederichs, Solvig
    Tuan, Rocky S.
    STEM CELLS AND DEVELOPMENT, 2014, 23 (14) : 1594 - 1610
  • [33] EFFECTS OF BACTERIAL LIPOPOLYSACCHARIDE AND SHIGA TOXIN ON INDUCED PLURIPOTENT STEM CELL-DERIVED MESENCHYMAL STEM CELLS
    Martire-Greco, Daiana
    La Greca, Alejandro
    Castillo Montanez, Luis
    Biani, Celeste
    Lombardi, Antonella
    Birnberg-Weiss, Federico
    Norris, Alessandra
    Sacerdoti, Flavia
    Amaral, Maria Marta
    Rodrigues-Rodriguez, Nahuel
    Pittaluga, Jose Ramon
    Furmento, Veronica Alejandra
    Landoni, Veronica Ines
    Miriuka, Santiago Gabriel
    Luzzani, Carlos
    Fernandez, Gabriela Cristina
    SHOCK, 2023, 59 (06): : 941 - 947
  • [34] Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Acquire Rejuvenation and Reduced Heterogeneity
    Wruck, Wasco
    Graffmann, Nina
    Spitzhorn, Lucas-Sebastian
    Adjaye, James
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [35] Human induced pluripotent stem cell-derived mesenchymal stem cells prevent adriamycin nephropathy in mice
    Wu, Hao Jia
    Yiu, Wai Han
    Wong, Dickson W. L.
    Li, Rui Xi
    Chan, Loretta Y. Y.
    Leung, Joseph C. K.
    Zhang, Yuelin
    Lian, Qizhou
    Lai, Kar Neng
    Tse, Hung Fat
    Tang, Sydney C. W.
    ONCOTARGET, 2017, 8 (61) : 103640 - 103656
  • [36] Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells
    Chow, Lyndah
    Johnson, Valerie
    Regan, Dan
    Wheat, William
    Webb, Saiphone
    Koch, Peter
    Dow, Steven
    STEM CELL RESEARCH, 2017, 25 : 221 - 232
  • [37] Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells
    Siying Zhong
    Xufeng He
    Yuexia Li
    Xiangxin Lou
    Tissue Engineering and Regenerative Medicine, 2019, 16 : 141 - 150
  • [38] Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells
    Zhong, Siying
    He, Xufeng
    Li, Yuexia
    Lou, Xiangxin
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2019, 16 (02) : 141 - 150
  • [39] The therapeutic effects of induced pluripotent stem cell-derived mesenchymal stem cells on Parkinson's disease
    Ren, Hao
    Wang, Yuwei
    Chen, Yingying
    Ma, Feilong
    Shi, Qing
    Wang, Zichen
    Gui, Yaoting
    Liu, Jianbo
    Tang, Huiru
    IUBMB LIFE, 2025, 77 (01)
  • [40] Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells
    Wang, Ping
    Ma, Tao
    Guo, Dong
    Hu, Kevin
    Shu, Yan
    Xu, Hockin H. K.
    Schneider, Abraham
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2018, 12 (02) : 437 - 446