Some new inequalities of Hermite-Hadamard type via Katugampola fractional integral

被引:1
作者
Butt, Saad Ihsan [1 ]
Bayraktar, Bahtiyar [2 ]
Valdes, Juan E. Napoles [3 ,4 ]
机构
[1] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[2] Bursa Uludag Univ, Gorukle Campus, Bursa, Turkiye
[3] UNNE, FaCENA, Ave Libertad 5450, RA-3400 Corrientes, Argentina
[4] UTN FRRE, French 414, RA-3500 Resistencia, Chaco, Argentina
来源
PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS | 2023年 / 55卷 / 7-8期
关键词
Hermite-Hadamard inequality; F-convex function; Young inequality; Holder's inequality; power mean inequality; Katugampola fractional integral; CONVEX-FUNCTIONS; DERIVATIVES;
D O I
10.52280/pujm.2023.55(7-8)02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we present the midpoint and trapezoid inequalities for an F-convex function in terms of Katugampola fractional integral operators. We obtained new results involving Katugampola-fractional integral operators for differentiable mapping Phi whose second derivatives in the absolute values are F-convex. Also established connections between our results with several renowned results in literature. Results proved in this paper may stimulate further research in this area.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 50 条
  • [41] Some Hermite-Hadamard Inequalities via Generalized Fractional Integral on the Interval-Valued Coordinates
    Lo, Jen Chieh
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [42] SOME HERMITE-HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 411 - 416
  • [43] On New Fractional Version of Generalized Hermite-Hadamard Inequalities
    Hyder, Abd-Allah
    Almoneef, Areej A.
    Budak, Huseyin
    Barakat, Mohamed A.
    MATHEMATICS, 2022, 10 (18)
  • [44] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291
  • [45] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators
    Mehreen, Naila
    Anwar, Matloob
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (04): : 230 - 240
  • [46] On the Hermite-Hadamard type inequalities
    Zhao, Chang-Jian
    Cheung, Wing-Sum
    Li, Xiao-Yan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [47] NEW INEQUALITIES ON HERMITE-HADAMARD UTILIZING FRACTIONAL INTEGRALS
    Qaisar, Shahid
    Iqbal, Muhammad
    Hussain, Sabir
    Butt, Saad I.
    Meraj, Muhammad A.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (01): : 15 - 27
  • [48] Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions With Respect to a Monotone Function
    Mohammed, Pshtiwan Othman
    FILOMAT, 2020, 34 (07) : 2401 - 2411
  • [49] Some fractional integral inequalities of type Hermite–Hadamard through convexity
    Shahid Qaisar
    Jamshed Nasir
    Saad Ihsan Butt
    Asma Asma
    Farooq Ahmad
    Muhammad Iqbal
    Sajjad Hussain
    Journal of Inequalities and Applications, 2019
  • [50] Hermite-Hadamard type inequalities for fractional integrals via Green's function
    Khan, Muhammad Adil
    Iqbal, Arshad
    Suleman, Muhammad
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,