Some new inequalities of Hermite-Hadamard type via Katugampola fractional integral

被引:1
|
作者
Butt, Saad Ihsan [1 ]
Bayraktar, Bahtiyar [2 ]
Valdes, Juan E. Napoles [3 ,4 ]
机构
[1] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[2] Bursa Uludag Univ, Gorukle Campus, Bursa, Turkiye
[3] UNNE, FaCENA, Ave Libertad 5450, RA-3400 Corrientes, Argentina
[4] UTN FRRE, French 414, RA-3500 Resistencia, Chaco, Argentina
来源
PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS | 2023年 / 55卷 / 7-8期
关键词
Hermite-Hadamard inequality; F-convex function; Young inequality; Holder's inequality; power mean inequality; Katugampola fractional integral; CONVEX-FUNCTIONS; DERIVATIVES;
D O I
10.52280/pujm.2023.55(7-8)02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we present the midpoint and trapezoid inequalities for an F-convex function in terms of Katugampola fractional integral operators. We obtained new results involving Katugampola-fractional integral operators for differentiable mapping Phi whose second derivatives in the absolute values are F-convex. Also established connections between our results with several renowned results in literature. Results proved in this paper may stimulate further research in this area.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 50 条
  • [21] New Conformable Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions
    Mohammed, Pshtiwan Othman
    Hamasalh, Faraidun Kadir
    SYMMETRY-BASEL, 2019, 11 (02):
  • [22] New Modified Conformable Fractional Integral Inequalities of Hermite-Hadamard Type with Applications
    Abdeljawad, Thabet
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [23] Hermite-Hadamard and Hermite-Hadamard-Fejer Type Inequalities Involving Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Alan, Emrullah Aykan
    FILOMAT, 2019, 33 (08) : 2367 - 2380
  • [24] Some Hermite-Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    Usia, Fuat
    Yildirim, Huseyin
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (01): : 25 - 36
  • [25] New Estimates on Hermite-Hadamard Type Inequalities via Generalized Tempered Fractional Integrals for Convex Functions with Applications
    Kashuri, Artion
    Almalki, Yahya
    Mahnashi, Ali M.
    Sahoo, Soubhagya Kumar
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [26] New results on Hermite-Hadamard type inequalities via Caputo-Fabrizio fractional integral for s-convex function
    Nasir, Jamshed
    Qaisar, Shahid
    Qayyum, Ather
    Budak, Huseyin
    FILOMAT, 2023, 37 (15) : 4943 - 4957
  • [27] Some New Hermite-Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals
    Kashuri, Artion
    Sahoo, Soubhagya Kumar
    Aljuaid, Munirah
    Tariq, Muhammad
    De La sen, Manuel
    SYMMETRY-BASEL, 2023, 15 (04):
  • [28] A fractional integral identity and its application to fractional Hermite-Hadamard type inequalities
    Qiu, Kee
    Wang, Jin Rong
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (01) : 1 - 16
  • [29] Some new refinement of Hermite-Hadamard type inequalities and their applications
    Kashuri, Artion
    Liko, Rozana
    Dragomir, Silvestru Sever
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (04) : 159 - 188
  • [30] Generalized Hermite-Hadamard type inequalities involving fractional integral operators
    Erhan Set
    Muhammed Aslam Noor
    Muhammed Uzair Awan
    Abdurrahman Gözpinar
    Journal of Inequalities and Applications, 2017