Some new inequalities of Hermite-Hadamard type via Katugampola fractional integral

被引:3
作者
Butt, Saad Ihsan [1 ]
Bayraktar, Bahtiyar [2 ]
Valdes, Juan E. Napoles [3 ,4 ]
机构
[1] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
[2] Bursa Uludag Univ, Gorukle Campus, Bursa, Turkiye
[3] UNNE, FaCENA, Ave Libertad 5450, RA-3400 Corrientes, Argentina
[4] UTN FRRE, French 414, RA-3500 Resistencia, Chaco, Argentina
来源
PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS | 2023年 / 55卷 / 7-8期
关键词
Hermite-Hadamard inequality; F-convex function; Young inequality; Holder's inequality; power mean inequality; Katugampola fractional integral; CONVEX-FUNCTIONS; DERIVATIVES;
D O I
10.52280/pujm.2023.55(7-8)02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we present the midpoint and trapezoid inequalities for an F-convex function in terms of Katugampola fractional integral operators. We obtained new results involving Katugampola-fractional integral operators for differentiable mapping Phi whose second derivatives in the absolute values are F-convex. Also established connections between our results with several renowned results in literature. Results proved in this paper may stimulate further research in this area.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 22 条
[1]   ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F-CONVEX FUNCTIONS [J].
Adamek, Miroslaw .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03) :867-874
[2]   ON THE SINGULARITIES OF CONVEX-FUNCTIONS [J].
ALBERTI, G ;
AMBROSIO, L ;
CANNARSA, P .
MANUSCRIPTA MATHEMATICA, 1992, 76 (3-4) :421-435
[3]  
Bayraktar B, 2020, TWMS J APPL ENG MATH, V10, P625
[4]   Integral inequalities for mappings whose derivatives are (h, m, s)-convex modified of second type via Katugampola integrals [J].
Bayraktar, Bahtiyar ;
Valdas, June E. Naepoles .
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2022, 49 (02) :371-383
[5]   New Variants of Quantum Midpoint-Type Inequalities [J].
Butt, Saad Ihsan ;
Budak, Hueseyin ;
Nonlaopon, Kamsing .
SYMMETRY-BASEL, 2022, 14 (12)
[6]   New Hadamard-type integral inequalities via a general form of fractional integral operators [J].
Butt, Saad Ihsan ;
Yousaf, Saba ;
Akdemir, Ahmet Ocak ;
Dokuyucu, Mustafa Ali .
CHAOS SOLITONS & FRACTALS, 2021, 148
[7]   Some fractional integral inequalities for the Katugampola integral operator [J].
Dubey, Ravi Shanker ;
Goswami, Pranay .
AIMS MATHEMATICS, 2019, 4 (02) :193-198
[8]  
Katugampola UN, 2014, BULL MATH ANAL APPL, V6, P1
[9]   New midpoint and trapezoidal-type inequalities for prequasiinvex functions via generalized fractional integrals [J].
Kermausuor, Seth ;
Nwaeze, Eze R. .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2022, 67 (04) :677-692
[10]   New Integral Inequalities via the Katugampola Fractional Integrals for Functions Whose Second Derivatives Are Strongly η-Convex [J].
Kermausuor, Seth ;
Nwaeze, Eze R. ;
Tameru, Ana M. .
MATHEMATICS, 2019, 7 (02)