Connected component of positive solutions for one-dimensional p-Laplacian problem with a singular weight

被引:0
作者
Wei, Liping [1 ]
Su, Shunchang [1 ]
机构
[1] Gansu Agr Univ, Coll Informat Sci & Technol, Lanzhou, Peoples R China
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
关键词
p-Laplacian; spectrum; nonlinear boundary conditions; bifurcation; GLOBAL BIFURCATION PHENOMENA; BRANCH;
D O I
10.1515/math-2023-0122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove the existence of eigenvalues for the problem {(phi(p)(u'(t)))' + lambda h(t)phi(p)(u(t)) = 0, t is an element of (0,1), Au(0) - A'u'(0) = 0 Bu(1) + B'u'(1) = 0 under hypotheses that phi(p)(s) = vertical bar S vertical bar Sp-2, p > 1, and h is a nonnegative measurable function on (0, 1), which may be singular at 0 and/or 1. For the result, we establish the existence of connected components of positive solutions for the following problem: {(phi(p)(u'(t)))' + lambda h(t)f(u(t)) = 0, t is an element of (0,1), u(0) = 0 au'(1) +c(lambda, u(1)) = 0, where lambda is a real parameter, a >= 0, f is an element of C((0, infinity), (0, infinity) satisfies inf(s is an element of(0,infinity))f (s) > 0 and limsup(s -> 0)s(alpha)f (s) < infinity for some alpha > 0.
引用
收藏
页数:12
相关论文
共 19 条