Estimation and inference in functional varying-coefficient single-index quantile regression models

被引:1
作者
Zhu, Hanbing [1 ]
Zhang, Tong [2 ]
Zhang, Yuanyuan [2 ,4 ]
Lian, Heng [3 ]
机构
[1] Anhui Univ, Sch Big Data & Stat, Hefei, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou, Peoples R China
[3] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
B-spline; functional data; quantile regression; score test; single-index model; varying-coefficient model; LONGITUDINAL DATA; SPLINE ESTIMATION; EMPIRICAL LIKELIHOOD; LINEAR-MODELS; GEE ANALYSIS; SELECTION;
D O I
10.1080/10485252.2023.2236722
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a flexible functional varying-coefficient single-index quantile regression model where the functional covariates of the linear part have time-varying coefficients and the single-index component offers great model flexibility in data analysis while circumventing the curse of dimensionality. The proposed model includes many existing quantile regression models for functional/longitudinal data as special cases. We use B-splines to estimate the link and coefficient functions. Under some mild conditions, we establish the asymptotic normality of the estimated index parameter vector, and obtain the convergence rates of the estimated link and coefficient functions. Moreover, we propose a score test to examine whether the effects of some covariates on the functional response are time-varying. Finally, we provide some numerical studies including Monte Carlo simulations and an empirical application to illustrate the proposed method.
引用
收藏
页码:643 / 672
页数:30
相关论文
共 34 条
[1]   Partial linear models for longitudinal data based on quadratic inference functions [J].
Bai, Yang ;
Zhu, Zhongyi ;
Fung, Wing K. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (01) :104-118
[2]   SEMIPARAMETRIC GEE ANALYSIS IN PARTIALLY LINEAR SINGLE-INDEX MODELS FOR LONGITUDINAL DATA [J].
Chen, Jia ;
Li, Degui ;
Liang, Hua ;
Wang, Suojin .
ANNALS OF STATISTICS, 2015, 43 (04) :1682-1715
[3]   Estimation in Partially Linear Single-Index Panel Data Models With Fixed Effects [J].
Chen, Jia ;
Gao, Jiti ;
Li, Degui .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (03) :315-330
[4]   THE EFM APPROACH FOR SINGLE-INDEX MODELS [J].
Cui, Xia ;
Haerdle, Wolfgang Karl ;
Zhu, Lixing .
ANNALS OF STATISTICS, 2011, 39 (03) :1658-1688
[5]  
De Boor C., 2001, A Practical Guide To Splines
[6]   New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis [J].
Fan, JQ ;
Li, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (467) :710-723
[7]   Quantile regression for longitudinal data based on latent Markov subject-specific parameters [J].
Farcomeni, Alessio .
STATISTICS AND COMPUTING, 2012, 22 (01) :141-152
[8]   Ultra high-dimensional semiparametric longitudinal data analysis [J].
Green, Brittany ;
Lian, Heng ;
Yu, Yan ;
Zu, Tianhai .
BIOMETRICS, 2021, 77 (03) :903-913
[9]  
Gutenbrunner C., 1993, J NONPARAMETR STAT, V2, P307, DOI DOI 10.1080/10485259308832561
[10]  
HALL P, 1988, J ROY STAT SOC B MET, V50, P381