An objective approach to select surrogate species for connectivity conservation

被引:4
|
作者
Dutta, Trishna [1 ,2 ]
De Barba, Marta [3 ,4 ,5 ]
Selva, Nuria [6 ,7 ]
Fedorca, Ancuta Cotovelea [8 ]
Maiorano, Luigi [9 ]
Thuiller, Wilfried [3 ]
Zedrosser, Andreas [10 ,11 ]
Signer, Johannes [1 ]
Pflueger, Femke [1 ,12 ]
Frank, Shane [10 ]
Lucas, Pablo M. [6 ,9 ,13 ]
Balkenhol, Niko [1 ]
机构
[1] Univ Goettingen, Fac Forest Sci & Forest Ecol, Wildlife Sci, Gottingen, Germany
[2] European Forest Inst, Resilience Programme, Pl Vereinten Nationen, Bonn, Germany
[3] Univ Savoie Mt Blanc, Univ Grenoble Alpes, CNRS, Lab Ecol Alpine LECA, Grenoble, France
[4] Univ Ljubljana, Biotech Fac, Dept Biol, Ljubljana, Slovenia
[5] DivjaLabs Ltd, Aljazeva Ulica, Ljubljana, Slovenia
[6] Polish Acad Sci, Adama Mickiewicza, Inst Nat Conservat, Krakow, Poland
[7] Univ Huelva, Fac Ciencias Expt, Ctr Estudios Avanzados Fis Matemat & Computac, Dept Ciencias Integradas, Huelva, Spain
[8] Natl Inst Res & Dev Forestry Marin Dracea, Wildlife Dept, Brasov, Romania
[9] Sapienza Univ Rome, Dept Biol & Biotechnol Charles Darwin, Rome, Italy
[10] Univ South Eastern Norway, Dept Nat Sci & Environm Hlth, Bo, Norway
[11] Univ Nat Resources & Life Sci, Inst Wildlife Biol & Game Management, Vienna, Austria
[12] Univ Goettingen, Dept Conservat Biol, Gottingen, Germany
[13] Univ Seville, Fac Biol, Dept Biol Vegetal & Ecol, Seville, Spain
来源
FRONTIERS IN ECOLOGY AND EVOLUTION | 2023年 / 11卷
关键词
connectivity; umbrella species; Europe; objectivity; surrogate species; landscape; human influence; LANDSCAPE CONNECTIVITY; DISPERSAL DISTANCE; EXTINCTION RISK; MODELS;
D O I
10.3389/fevo.2023.1078649
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
IntroductionConnected landscapes can increase the effectiveness of protected areas by facilitating individual movement and gene flow between populations, thereby increasing the persistence of species even in fragmented habitats. Connectivity planning is often based on modeling connectivity for a limited number of species, i.e., "connectivity umbrellas", which serve as surrogates for co-occurring species. Connectivity umbrellas are usually selected a priori, based on a few life history traits and often without evaluating other species. MethodsWe developed a quantitative method to identify connectivity umbrellas at multiple scales. We demonstrate the approach on the terrestrial large mammal community (24 species) in continental Europe at two scales: 13 geographic biomes and 36 ecoregions, and evaluate the interaction of landscape characteristics on the selection of connectivity umbrellas. ResultsWe show that the number, identity, and attributes of connectivity umbrellas are sensitive to spatial scale and human influence on the landscape. Multiple species were selected as connectivity umbrellas in 92% of the geographic biomes (average of 4.15 species) and 83% of the ecoregions (average of 3.16 species). None of the 24 species evaluated is by itself an effective connectivity umbrella across its entire range. We identified significant interactions between species and landscape attributes. Species selected as connectivity umbrellas in regions with low human influence have higher mean body mass, larger home ranges, longer dispersal distances, smaller geographic ranges, occur at lower population densities, and are of higher conservation concern than connectivity umbrellas in more human-influenced regions. More species are required to meet connectivity targets in regions with high human influence (average of three species) in comparison to regions with low human influence (average of 1.67 species). DiscussionWe conclude that multiple species selected in relation to landscape scale and characteristics are essential to meet connectivity goals. Our approach enhances objectivity in selecting which and how many species are required for connectivity conservation and fosters well-informed decisions, that in turn benefit entire communities and ecosystems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Characterising landscape connectivity for conservation planning using a dispersal guild approach
    Alex Mark Lechner
    Daniel Sprod
    Oberon Carter
    Edward C. Lefroy
    Landscape Ecology, 2017, 32 : 99 - 113
  • [22] Evaluating giant panda as a surrogate species for conservation co-occurring species in the Baishuijiang National Nature Reserve
    Zhanlei Rong
    Xingming Liu
    Chuanyan Zhao
    Liwen He
    Junjie Liu
    Yunfei Gao
    Fei Zang
    Haojie Xu
    Zhaoxia Guo
    Yahua Mao
    Environmental Science and Pollution Research, 2019, 26 : 8939 - 8948
  • [23] Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas
    Rapacciuolo, Giovanni
    Graham, Catherine H.
    Marin, Julie
    Behm, Jocelyn E.
    Costa, Gabriel C.
    Hedges, S. Blair
    Helmus, Matthew R.
    Radeloff, Volker C.
    Young, Bruce E.
    Brooks, Thomas M.
    NATURE ECOLOGY & EVOLUTION, 2019, 3 (01) : 53 - 61
  • [24] Integrating multiple species connectivity and habitat quality into conservation planning for coral reefs
    Magris, Rafael A.
    Treml, Eric A.
    Pressey, Robert L.
    Weeks, Rebecca
    ECOGRAPHY, 2016, 39 (07) : 649 - 664
  • [25] Evaluating giant panda as a surrogate species for conservation co-occurring species in the Baishuijiang National Nature Reserve
    Rong, Zhanlei
    Liu, Xingming
    Zhao, Chuanyan
    He, Liwen
    Liu, Junjie
    Gao, Yunfei
    Zang, Fei
    Xu, Haojie
    Guo, Zhaoxia
    Mao, Yahua
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (09) : 8939 - 8948
  • [26] Conservation planning across realms: Enhancing connectivity for multi-realm species
    Hermoso, Virgilio
    Vasconcelos, Rita P.
    Henriques, Sofia
    Filipe, Ana F.
    Carvalho, Silvia B.
    JOURNAL OF APPLIED ECOLOGY, 2021, 58 (03) : 644 - 654
  • [27] Incorporating connectivity into conservation planning for the optimal representation of multiple species and ecosystem services
    Williams, Sara H.
    Scriven, Sarah A.
    Burslem, David F. R. P.
    Hill, Jane K.
    Reynolds, Glen
    Agama, Agnes L.
    Kugan, Frederick
    Maycock, Colin R.
    Khoo, Eyen
    Hastie, Alexander Y. L.
    Sugau, John B.
    Nilus, Reuben
    Pereira, Joan T.
    Tsen, Sandy L. T.
    Lee, Leung Y.
    Juiling, Suzika
    Hodgson, Jenny A.
    Cole, Lydia E. S.
    Asner, Gregory P.
    Evans, Luke J.
    Brodie, Jedediah F.
    CONSERVATION BIOLOGY, 2020, 34 (04) : 934 - 942
  • [28] Prioritization of landscape connectivity for the conservation of Peary caribou
    Mallory, Conor D.
    Boyce, Mark S.
    ECOLOGY AND EVOLUTION, 2019, 9 (04): : 2189 - 2205
  • [29] Testing the focal species approach to making conservation decisions for species persistence
    Nicholson, Emily
    Lindenmayer, David B.
    Frank, Karin
    Possingham, Hugh P.
    DIVERSITY AND DISTRIBUTIONS, 2013, 19 (5-6) : 530 - 540
  • [30] Isolating the roles of movement and reproduction on effective connectivity alters conservation priorities for an endangered bird
    Robertson, Ellen P.
    Fletcher, Robert J., Jr.
    Cattau, Christopher E.
    Udell, Bradley J.
    Reichert, Brian E.
    Austin, James D.
    Valle, Denis
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (34) : 8591 - 8596