Ringing spectroscopy in the magnomechanical system

被引:4
作者
Xu, Guan-Ting [1 ,2 ]
Zhang, Mai [1 ,2 ]
Wang, Zheng-Yu [1 ,2 ]
Wang, Yu [1 ,2 ]
Liu, Yu-Xi [3 ]
Shen, Zhen [1 ,2 ]
Guo, Guang-Can [1 ,2 ,4 ]
Dong, Chun-Hua [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Anhui, Peoples R China
[3] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Anhui, Peoples R China
来源
FUNDAMENTAL RESEARCH | 2023年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
Whispering gallery mode; Microcavity; Magnomechanical system; Ringing phenomenon; Ringing-up spectroscopy; RESONATORS; MAGNON;
D O I
10.1016/j.fmre.2022.09.014
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ringing phenomenon has been studied in optical whispering gallery mode (WGM) resonators and can be used to sense the ultrafast process in spectroscopy. Here we observe the ringing phenomenon in a magnomechanical system for the first time, which is induced by the interference between the microwave photons converted from the damped phonons and the probing microwave photons. This interference eventually appears as a transparency window even along with the ringing phenomenon in the measured microwave reflection spectrum, which is influ-enced by the scanning speed and the input power. Then, the ringing spectroscopy is used to measure the coupling strength between the magnon and phonon modes, and outline the displacement profile of ������1 , 2 , 2 mechanical mode in a YIG microsphere, demonstrating the theoretical analysis. In addition, the ring-up spectroscopy is developed in our magnomechanical system, laying the foundation for fast sensing based on mechanical motion.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [41] FEATURES OF EXCEPTIONAL POINTS AND THE CONTINUUM SPECTROSCOPY
    Okolowicz, J.
    Ploszajczak, M.
    ACTA PHYSICA POLONICA B, 2009, 40 (03): : 409 - 417
  • [42] Theory of cavity ring-up spectroscopy
    Ye, Ming-Yong
    Lin, Xiu-Min
    OPTICS EXPRESS, 2017, 25 (26): : 32395 - 32400
  • [43] A Review on Photoacoustic Spectroscopy Techniques for Gas Sensing
    Wijesinghe, Dakshith Ruvin
    Zobair, Md Abu
    Esmaeelpour, Mina
    SENSORS, 2024, 24 (20)
  • [44] Acoustic Resonance Spectroscopy with an Uncalibrated Microwave Path
    Alekseev, S. G.
    Luzanov, V. A.
    Raevsky, A. O.
    Balashov, V. V.
    Lopukhin, K. V.
    Polzikova, N. I.
    ACOUSTICAL PHYSICS, 2023, 69 (01) : 40 - 47
  • [45] Spectroscopy of polaritons in CdTe-based microcavities
    Andre, R
    Heger, D
    Dang, LS
    d'Aubigne, YM
    JOURNAL OF CRYSTAL GROWTH, 1998, 184 : 758 - 762
  • [46] Modification of cavity ring-up spectroscopy
    Shen, Meng-Chong
    Ye, Ming-Yong
    Lin, Xiu-Min
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [47] High resolution spectroscopy with a microparticle array sensor
    Weigel, Thomas
    Nett, Ralf
    Schweiger, Gustav
    Ostendorf, Andreas
    OPTICAL SENSING AND DETECTION, 2010, 7726
  • [48] Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy
    Talukdar, Abdul
    Khan, M. Faheem
    Lee, Dongkyu
    Kim, Seonghwan
    Thundat, Thomas
    Koley, Goutam
    NATURE COMMUNICATIONS, 2015, 6
  • [49] Quartz-Enhanced Photoacoustic Spectroscopy: A Review
    Patimisco, Pietro
    Scamarcio, Gaetano
    Tittel, Frank K.
    Spagnolo, Vincenzo
    SENSORS, 2014, 14 (04) : 6165 - 6206
  • [50] Spectroscopy of mechanical dissipation in micro-mechanical membranes
    Joeckel, Andreas
    Rakher, Matthew T.
    Korppi, Maria
    Camerer, Stephan
    Hunger, David
    Mader, Matthias
    Treutlein, Philipp
    APPLIED PHYSICS LETTERS, 2011, 99 (14)