BOUNDARY REGULARITY OF BERGMAN KERNEL IN HoLDER SPACE

被引:0
|
作者
Shi, Ziming [1 ]
机构
[1] Rutgers Univ New Brunswick, Dept Math, Piscataway, NJ 08901 USA
关键词
Bergman kernel; Bergman projection; strictly pseudoconvex domain; STRICTLY PSEUDOCONVEX DOMAINS; BIHOLOMORPHIC-MAPPINGS; PROJECTION; LIPSCHITZ; EXTENSION; OPERATORS; COMPLEX;
D O I
10.2140/pjm.2023.324.157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a bounded strictly pseudoconvex domain in Cn. Assuming bD & ISIN; Ck+3+& alpha; where k is a nonnegative integer and 0 < & alpha; < 1, we show that (1) the Bergman kernel B( & BULL; , w0) & ISIN; Ck+min{& alpha;,1/2}( over bar D), for any w0 & ISIN; D and (2) the Bergman projection on D is a bounded operator from Ck+& beta; (D) to Ck+min{& alpha;,& beta; /2}(D) for any 0 < & beta; < 1. Our results both improve and generalize the work of E. Ligocka.
引用
收藏
页码:157 / 206
页数:52
相关论文
共 50 条
  • [21] Commutators of singular integrals, the Bergman projection, and boundary regularity of elliptic equations in the plane
    Tumanov, Alexander
    MATHEMATICAL RESEARCH LETTERS, 2016, 23 (04) : 1221 - 1246
  • [22] Lp regularity of the Bergman projection on the symmetrized polydisc
    Huo, Zhenghui
    Wick, Brett D.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,
  • [23] G-invariant Bergman kernel and geometric quantization on complex manifolds with boundary
    Hsiao, Chin-Yu
    Huang, Rung-Tzung
    Li, Xiaoshan
    Shao, Guokuan
    MATHEMATISCHE ANNALEN, 2024, 390 (04) : 4889 - 4930
  • [24] CR invariants of weight five in the Bergman kernel
    Hirachi, K
    Komatsu, G
    Nakazawa, N
    ADVANCES IN MATHEMATICS, 1999, 143 (02) : 185 - 250
  • [25] Bergman Kernel, Szego Kernel and Dirichlet Integral
    Yamada, Akira
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (07)
  • [26] Bergman Kernel, Szegö Kernel and Dirichlet Integral
    Akira Yamada
    Complex Analysis and Operator Theory, 2023, 17
  • [27] On discontinuity of the Bergman kernel function
    Diederich, K
    Herbort, G
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (07) : 825 - 832
  • [28] The Bergman kernel for the Vekua equation
    Campos, Hugo M.
    Kravchenko, Vladislav V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (16) : 9448 - 9454
  • [29] Behavior of the Bergman kernel at infinity
    Bo-Yong Chen
    Joe Kamimoto
    Takeo Ohsawa
    Mathematische Zeitschrift, 2004, 248 : 695 - 708
  • [30] The Bergman kernel and the green function
    Malyshev V.A.
    Journal of Mathematical Sciences, 1997, 87 (2) : 3366 - 3380