Enteric Methane Emissions from Dairy-Beef Steers Supplemented with the Essential Oil Blend Agolin Ruminant

被引:8
作者
Miller, Gemma A. [1 ]
Bowen, Jenna M. [1 ]
Dewhurst, Richard J. [2 ]
Zweifel, Beatrice [3 ]
Spengler, Katrin [3 ]
Duthie, Carol-Anne [1 ]
机构
[1] Scotlands Rural Coll, Beef & Sheep Res Ctr, West Mains Rd, Edinburgh EH9 3JG, Midlothian, Scotland
[2] Scotlands Rural Coll, Dairy Res & Innovat Ctr, West Mains Rd, Edinburgh EH9 3JG, Midlothian, Scotland
[3] Agolin SA, Route Picarde 20, CH-1145 Biere, Switzerland
关键词
Agolin Ruminant; enteric methane; essential oils; greenhouse gas mitigation; methane inhibitor; dairy-beef; cattle; ruminant; MODIFIERS; DIET; COWS;
D O I
10.3390/ani13111826
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Simple Summary: Methane is a greenhouse gas that substantially contributes to climate change. Agriculture is the largest source of methane globally, and more specifically, methane produced by ruminants during feed digestion (32% of global methane emissions). Essential oils have properties that may reduce the amount of methane produced by ruminants. This study tested the effectiveness of an essential oil product in reducing methane emissions from dairy-beef cattle. Methane emissions were measured from individual animals by confinement in respiration chambers. Results showed that although there was no difference in the mass of methane produced, the yield (grams of methane per kilogram of feed dry matter consumed) was lower in the animals receiving the essential oils. This reduced methane yield was caused by control animals consuming less feed during methane measurement periods. The same reduction in feed intake was not observed in the treatment animals. This suggests that animals supplemented with essential oils were less affected by confinement in respiration chambers than control animals. Agriculture is the largest source of methane globally, and enteric methane accounts for 32% of methane emissions globally. Dairy-beef is an increasingly important contributor to the beef industry. The objective of this study was to investigate if supplementation with a blend of essential oils (Agolin Ruminant) reduced enteric methane emissions from dairy-bred steers. Methane was measured from thirty-six Holstein Friesian steers (18 control and 18 treatment) in open-circuit respiration chambers, at three time-points relative to the introduction of Agolin Ruminant: (i) 3 (preadditive introduction co-variate), (ii) 46 days after introduction, and (iii) 116 days after introduction. A significantly lower methane yield was observed in treated animals compared to control animals at both 46 days (p < 0.05) and 116 days (p < 0.01) after the introduction of Agolin Ruminant, although there was no difference in methane production (g/day). Control animals appeared to be more affected by isolation in respiration chambers than animals receiving Agolin Ruminant, as indicated by a significant reduction in dry matter intake by control animals in respiration chambers.
引用
收藏
页数:7
相关论文
共 27 条
[1]  
AHDB (Agriculture and Horticulture Development Board), 2017, BEEF LAMB BEEF PROD
[2]  
Alvarez Ramon A., [No title captured]
[3]   A Meta-analysis Describing the Effects of the Essential oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows [J].
Belanche, Alejandro ;
Newbold, Charles J. ;
Morgavi, Diego P. ;
Bach, Alex ;
Zweifel, Beatrice ;
Yanez-Ruiz, David R. .
ANIMALS, 2020, 10 (04)
[4]   Essential oils and opportunities to mitigate enteric methane emissions from ruminants [J].
Benchaar, Chaouki ;
Greathead, Henry .
ANIMAL FEED SCIENCE AND TECHNOLOGY, 2011, 166-67 :338-355
[5]   Behavioral, cardiac and cortisol responses to brief peer separation and reunion in cattle [J].
Boissy, A ;
LeNeindre, P .
PHYSIOLOGY & BEHAVIOR, 1997, 61 (05) :693-699
[6]  
Brambila R., 2022, Open J. Anim. Sci, V12, P380, DOI DOI 10.4236/OJAS.2022.123029
[7]   ROBUST TESTS FOR EQUALITY OF VARIANCES [J].
BROWN, MB ;
FORSYTHE, AB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (346) :364-367
[8]   Essential oils as modifiers of rumen microbial fermentation [J].
Calsamiglia, S. ;
Busquet, M. ;
Cardozo, P. W. ;
Castillejos, L. ;
Ferret, A. .
JOURNAL OF DAIRY SCIENCE, 2007, 90 (06) :2580-2595
[9]   The Impact of Essential Oil Feed Supplementation on Enteric Gas Emissions and Production Parameters from Dairy Cattle [J].
Carrazco, Angelica V. ;
Peterson, Carlyn B. ;
Zhao, Yongjing ;
Pan, Yuee ;
McGlone, John J. ;
DePeters, Edward J. ;
Mitloehner, Frank M. .
SUSTAINABILITY, 2020, 12 (24) :1-11
[10]   In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation [J].
Castro-Montoya, Joaquin ;
Peiren, Nico ;
Cone, John W. ;
Zweifel, Beatrice ;
Fievez, Veerle ;
De Campeneere, Sam .
LIVESTOCK SCIENCE, 2015, 180 :134-142