Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries

被引:195
作者
Li, Chang [1 ,2 ,3 ]
Kingsbury, Ryan [4 ]
Thind, Arashdeep Singh [3 ,5 ]
Shyamsunder, Abhinandan [1 ,2 ,3 ]
Fister, Timothy T. [3 ,6 ]
Klie, Robert F. [3 ,5 ]
Persson, Kristin A. [3 ,7 ,8 ]
Nazar, Linda F. [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] Argonne Natl Lab, Joint Ctr Energy Storage Res, Lemont, IL 60439 USA
[4] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[5] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[6] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[7] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[8] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SOLVATION; HYBRID; CONSEQUENCES; DESIGN; OXIDE;
D O I
10.1038/s41467-023-38460-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Achieving high-performance aqueous Zn-metal batteries is a challenge. Here, authors report a eutectic electrolyte that concurrently enables selective Zn2+ intercalation at the cathode and highly reversible Zn metal plating/stripping, resulting in a benchmark high-areal capacity Zn anode-free cell. Two major challenges hinder the advance of aqueous zinc metal batteries for sustainable stationary storage: (1) achieving predominant Zn-ion (de)intercalation at the oxide cathode by suppressing adventitious proton co-intercalation and dissolution, and (2) simultaneously overcoming Zn dendrite growth at the anode that triggers parasitic electrolyte reactions. Here, we reveal the competition between Zn(2+)vs proton intercalation chemistry of a typical oxide cathode using ex-situ/operando techniques, and alleviate side reactions by developing a cost-effective and non-flammable hybrid eutectic electrolyte. A fully hydrated Zn2+ solvation structure facilitates fast charge transfer at the solid/electrolyte interface, enabling dendrite-free Zn plating/stripping with a remarkably high average coulombic efficiency of 99.8% at commercially relevant areal capacities of 4 mAh cm(-2) and function up to 1600 h at 8 mAh cm(-2). By concurrently stabilizing Zn redox at both electrodes, we achieve a new benchmark in Zn-ion battery performance of 4 mAh cm(-2) anode-free cells that retain 85% capacity over 100 cycles at 25 degrees C. Using this eutectic-design electrolyte, Zn | |Iodine full cells are further realized with 86% capacity retention over 2500 cycles. The approach represents a new avenue for long-duration energy storage.
引用
收藏
页数:13
相关论文
共 77 条
[1]   Long-Duration Electricity Storage Applications, Economics, and Technologies [J].
Albertus, Paul ;
Manser, Joseph S. ;
Litzelman, Scott .
JOULE, 2020, 4 (01) :21-32
[2]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[3]   Fluorinated interphase enables reversible aqueous zinc battery chemistries [J].
Cao, Longsheng ;
Li, Dan ;
Pollard, Travis ;
Deng, Tao ;
Zhang, Bao ;
Yang, Chongyin ;
Chen, Long ;
Vatamanu, Jenel ;
Hu, Enyuan ;
Hourwitz, Matt J. ;
Ma, Lin ;
Ding, Michael ;
Li, Qin ;
Hou, Singyuk ;
Gaskell, Karen ;
Fourkas, John T. ;
Yang, Xiao-Qing ;
Xu, Kang ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2021, 16 (08) :902-+
[4]   Solvation Structure Design for Aqueous Zn Metal Batteries [J].
Cao, Longsheng ;
Li, Dan ;
Hu, Enyuan ;
Xu, Jijian ;
Deng, Tao ;
Ma, Lin ;
Wang, Yi ;
Yang, Xiao-Qing ;
Wang, Chunsheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) :21404-21409
[5]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[6]   Hyper-dendritic nanoporous zinc foam anodes [J].
Chamoun, Mylad ;
Hertzberg, Benjamin J. ;
Gupta, Tanya ;
Davies, Daniel ;
Bhadra, Shoham ;
Van Tassell, Barry ;
Erdonmez, Can ;
Steingart, Daniel A. .
NPG ASIA MATERIALS, 2015, 7 :e178-e178
[7]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[8]   Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion [J].
Chaudhari, Mangesh I. ;
Nair, Jijeesh R. ;
Pratt, Lawrence R. ;
Soto, Fernando A. ;
Balbuena, Perla B. ;
Rempe, Susan B. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (12) :5709-5718
[9]   2.5 V High-Performance Aqueous and Semi-Solid-State Symmetric Supercapacitors Enabled by 3 m Sulfolane-Saturated Aqueous Electrolytes [J].
Cheng, Xiaolin ;
Yuan, Jingchao ;
Hu, Jiaqi ;
Chen, Shuangqiang ;
Yan, Hao ;
Yang, Weijing ;
Li, Wenrong ;
Dai, Yang .
ENERGY TECHNOLOGY, 2022, 10 (06)
[10]  
Cohen O., 2021, SOLVATION ANAL