Novel Bilayer SnO2 Electron Transport Layers with Atomic Layer Deposition for High-Performance α-FAPbI3 Perovskite Solar Cells

被引:31
作者
Zhang, Xuecong [1 ,2 ]
Zhou, Yan [1 ,2 ]
Chen, Muyang [1 ,2 ]
Wang, Dianxi [1 ,2 ]
Chao, Lingfeng [1 ,2 ]
Lv, Yifan [1 ,2 ]
Zhang, Hui [1 ,2 ]
Xia, Yingdong [1 ,2 ]
Li, Mingjie [3 ,4 ]
Hu, Zhelu [1 ,2 ]
Chen, Yonghua [1 ,2 ,5 ]
机构
[1] Nanjing Tech Univ, Sch Flexible Elect Future Technol, Key Lab Flexible Elect KLOFE, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Inst Adv Mat IAM, Sch Flexible Elect Future Technol, Nanjing 211816, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong 999077, Peoples R China
[4] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[5] Opt Valley Lab, Wuhan 430074, Peoples R China
基金
国家自然科学基金国际合作与交流项目;
关键词
perovskite solar cells; SnO2 electron transport layers (ETLs); atomic layer deposition (ALD); sol-gel solution; energy level alignment; TRAP DENSITY; EFFICIENT; TEMPERATURE;
D O I
10.1002/smll.202303254
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite solar cells (PSCs) based on the SnO2 electron transport layer (ETL) have achieved remarkable photovoltaic efficiency. However, the commercial SnO2 ETLs show various shortcomings. The SnO2 precursor is prone to agglomeration, resulting in poor morphology with numerous interface defects. Additionally, the open circuit voltage (V-oc) would be constrained by the energy level mismatch between the SnO2 and the perovskite. And, few studies designed SnO2-based ETLs to promote crystal growth of PbI2, a crucial prerequisite for obtaining high-quality perovskite films via the two-step method. Herein, we proposed a novel bilayer SnO2 structure that combined the atomic layer deposition (ALD) and sol-gel solution to well address the aforementioned issues. Due to the unique conformal effect of ALD-SnO2, it can effectively modulate the roughness of FTO substrate, enhance the quality of ETL, and induce the growth of PbI2 crystal phase to develop the crystallinity of perovskite layer. Furthermore, a created built-in field of the bilayer SnO2 can help to overcome the electron accumulation at the ETL/perovskite interface, leading to a higher V-oc and fill factor. Consequently, the efficiency of PSCs with ionic liquid solvent increases from 22.09% to 23.86%, maintaining 85% initial efficiency in a 20% humidity N2 environment for 1300 h.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Highly efficient planar perovskite solar cells through band alignment engineering [J].
Baena, Juan Pablo Correa ;
Steier, Ludmilla ;
Tress, Wolfgang ;
Saliba, Michael ;
Neutzner, Stefanie ;
Matsui, Taisuke ;
Giordano, Fabrizio ;
Jacobsson, T. Jesper ;
Kandada, Ajay Ram Srimath ;
Zakeeruddin, Shaik M. ;
Petrozza, Annamaria ;
Abate, Antonio ;
Nazeeruddin, Mohammad Khaja ;
Graetzel, Michael ;
Hagfeldt, Anders .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2928-2934
[2]   TRAP DENSITY DETERMINATION BY SPACE-CHARGE-LIMITED CURRENTS [J].
BUBE, RH .
JOURNAL OF APPLIED PHYSICS, 1962, 33 (05) :1733-&
[3]   Benefits of fullerene/SnO2 bilayers as electron transport layer for efficient planar perovskite solar cells [J].
Chen, Yun ;
Xu, Cong ;
Xiong, Jian ;
Zhang, Zheling ;
Zhang, Xiuyun ;
Yang, Junliang ;
Xue, Xiaogang ;
Yang, Dong ;
Zhang, Jian .
ORGANIC ELECTRONICS, 2018, 58 :294-300
[4]   Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J].
Docampo, Pablo ;
Ball, James M. ;
Darwich, Mariam ;
Eperon, Giles E. ;
Snaith, Henry J. .
NATURE COMMUNICATIONS, 2013, 4
[5]   Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance [J].
Fang, Zhimin ;
Meng, Xianyi ;
Zuo, Chuantian ;
Li, Dan ;
Xiao, Zuo ;
Yi, Chenyi ;
Wang, Mingkui ;
Jin, Zhiwen ;
Yang, Shangfeng ;
Ding, Liming .
SCIENCE BULLETIN, 2019, 64 (23) :1743-1746
[6]   Stable Metal-Halide Perovskite Colloids in Protic Ionic Liquid [J].
Gu, Hao ;
Niu, Tingting ;
Zuo, Shouwei ;
Cai, Yongqing ;
Chao, Lingfeng ;
Mueller-Buschbaum, Peter ;
Xia, Yingdong ;
Zhang, Jing ;
Xing, Guichuan ;
Chen, Yonghua .
CCS CHEMISTRY, 2022, 4 (10) :3264-3274
[7]   Stabilizing Fullerene for Burn-in-Free and Stable Perovskite Solar Cells under Ultraviolet Preconditioning and Light Soaking [J].
Hang, Pengjie ;
Xie, Jiangsheng ;
Kan, Chenxia ;
Li, Biao ;
Zhang, Yiqiang ;
Gao, Pingqi ;
Yang, Deren ;
Yu, Xuegong .
ADVANCED MATERIALS, 2021, 33 (10)
[8]   Indium-Free Perovskite Solar Cells Enabled by Impermeable Tin-Oxide Electron Extraction Layers [J].
Hu, Ting ;
Becker, Tim ;
Pourdavoud, Neda ;
Zhao, Jie ;
Brinkmann, Kai Oliver ;
Heiderhoff, Ralf ;
Gahlmann, Tobias ;
Huang, Zengqi ;
Olthof, Selina ;
Meerholz, Klaus ;
Tobbens, Daniel ;
Cheng, Baochang ;
Chen, Yiwang ;
Riedl, Thomas .
ADVANCED MATERIALS, 2017, 29 (27)
[9]   Low-Temperature In Situ Amino Functionalization of TiO2 Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells [J].
Hu, Wanpei ;
Zhou, Weiran ;
Lei, Xunyong ;
Zhou, Pengcheng ;
Zhang, Mengmeng ;
Chen, Tao ;
Zeng, Hualing ;
Zhu, Jun ;
Dai, Songyuan ;
Yang, Shihe ;
Yang, Shangfeng .
ADVANCED MATERIALS, 2019, 31 (08)
[10]   Luminescence enhancement effects on nanostructured perovskite thin films for Er/Yb-doped solar cells [J].
Hu, Zhelu ;
Gonzalez, Maria Ujue ;
Chen, Zhuoying ;
Gredin, Patrick ;
Mortier, Michel ;
Garcia-Martin, Antonio ;
Aigouy, Lionel .
NANOSCALE ADVANCES, 2022, 4 (07) :1786-1792