Fractional infinite time-delay evolution equations with non-instantaneous impulsive

被引:2
作者
Salem, Ahmed [1 ]
Alharbi, Kholoud N. [1 ,2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Qassim Univ, Coll Sci & Arts Uglat Asugour, Dept Math, Buraydah, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 06期
关键词
Caputo fractional derivative; infinite time -delay; mild solution; non; -instantaneous; impulsive; Krasnoselskii?s theorem; DIFFERENTIAL-EQUATIONS;
D O I
10.3934/math.2023652
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This dissertation is regarded to investigate the system of infinite time-delay and non-instantaneous impulsive to fractional evolution equations containing an infinitesimal generator operator. It turns out that its mild solution is existed and is unique. Our model is built using a fractional Caputo approach of order lies between 1 and 2. To get the mild solution, the families associated with cosine and sine which are linear strongly continuous bounded operators, are provided. It is common to use Krasnoselskii's theorem and the Banach contraction mapping principle to prove the existence and uniqueness of the mild solution. To confirm that our results are applicable, an illustrative example is
引用
收藏
页码:12943 / 12963
页数:21
相关论文
共 28 条
[1]   Non-Instantaneous Impulsive Fractional Differential Equations with State Dependent Delay and Practical Stability [J].
Agarwal, Ravi ;
Almeida, Ricardo ;
Hristova, Snezhana ;
O'Regan, Donal .
ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) :1699-1718
[2]   Non-Instantaneous Impulsive Boundary Value Problems Containing Caputo Fractional Derivative of a Function with Respect to Another Function and Riemann-Stieltjes Fractional Integral Boundary Conditions [J].
Asawasamrit, Suphawat ;
Thadang, Yasintorn ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada .
AXIOMS, 2021, 10 (03)
[3]   A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative [J].
Baleanu, Dumitru ;
Jajarmi, Amin ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
CHAOS SOLITONS & FRACTALS, 2020, 134
[4]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350
[5]   Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population [J].
Ghanbari, Behzad ;
Djilali, Salih .
CHAOS SOLITONS & FRACTALS, 2020, 138
[6]  
Hale J.K., 1978, Funkcial. Ekvac., V21, P11
[7]   Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel [J].
Kavitha, Velusamy ;
Arjunan, Mani Mallika ;
Baleanu, Dumitru .
AIMS MATHEMATICS, 2022, 7 (05) :9353-9372
[8]  
Kilbas AA, 2006, Book Series, V204
[9]   Existence of mild solution of Atangana-Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions [J].
Kumar, Ashish ;
Pandey, Dwijendra N. .
CHAOS SOLITONS & FRACTALS, 2020, 132
[10]  
Mfadel A. El., 2022, NONAUTONOMOUS DYN SY, V9, P272, DOI [10.1515/msds-2022-0157, DOI 10.1515/MSDS-2022-0157]