共 50 条
Alloying Matters for Ordering: Synthesis of Highly Ordered PtCo Intermetallic Catalysts for Fuel Cells
被引:15
|作者:
Zeng, Wei-Jie
[1
]
Wang, Chang
[2
]
Yin, Peng
[1
]
Tong, Lei
[1
]
Yan, Qiang-Qiang
[1
]
Chen, Ming-Xi
[1
]
Xu, Shi-Long
[1
]
Liang, Hai-Wei
[1
]
机构:
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Chem, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
关键词:
OXYGEN REDUCTION REACTION;
ELECTROCATALYSTS;
NANOPARTICLES;
PERFORMANCE;
STRAIN;
D O I:
10.1021/acs.inorgchem.3c00331
中图分类号:
O61 [无机化学];
学科分类号:
070301 ;
081704 ;
摘要:
Porous carbon-supported atomically ordered intermetallic compounds (IMCs) are promising electrocatalysts in boosting oxygen reduction reaction (ORR) for fuel cell applications. However, the formation mechanism of IMC structures under high temperatures is poorly understood, which hampers the synthesis of highly ordered IMC catalysts with promoted ORR performance. Here, we employ high-temperature X-ray diffraction and energy-dispersive spectroscopic elemental mapping techniques to study the formation process of IMCs, by taking PtCo for example, in an industry -relevant impregnation synthesis. We find that high-temperature annealing is crucial in promoting the formation of alloy particles with a stoichiometric Co/Pt ratio, which in turn is the precondition for transforming the disordered alloys to ordered intermetallic structures at a relatively low temperature. Based on the findings, we accordingly synthesize highly ordered L1(0)-type PtCo catalysts with a remarkable ORR performance in fuel cells.
引用
收藏
页码:5262 / 5269
页数:8
相关论文