?n integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool

被引:28
|
作者
Apostolopoulos, Vasilis [1 ]
Mamounakis, Ioannis [1 ]
Seitaridis, Andreas [1 ]
Tagkoulis, Nikolas [1 ]
Kourkoumpas, Dimitrios-Sotirios [1 ]
Iliadis, Petros [1 ]
Angelakoglou, Komninos [1 ]
Nikolopoulos, Nikolaos [1 ]
机构
[1] Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst CERTH CPERI, Egialeias 52, Maroussi, Greece
基金
欧盟地平线“2020”;
关键词
Life cycle assessment tool; Dynamic life cycle assessment; Life cycle costing; Real-time environmental analysis; Building renovation; ENVIRONMENTAL-IMPACT ASSESSMENT; DIFFERENT EUROPEAN LOCATIONS; RESIDENTIAL BUILDINGS; ASSESSMENT LCA; ENERGY ANALYSIS; FRAMEWORK;
D O I
10.1016/j.apenergy.2023.120710
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Building stock retrofitting is essential to achieve the ambitious sustainability goals of the building sector due to its high energy consumption rates. The evaluation of the various building interventions shall be holistically assessed in terms of environmental and costing impact. The aim of this paper is twofold: First, it presents the innovative characteristics of a developed online tool (Virtual intEgrated platfoRm on LIfe cycle AnalYsis -VERIFY) able to perform dynamic life cycle analysis and global warming impact assessments by capitalizing on the well-known LCA and LCC methodologies, applicable in the case of building renovation. VERIFY is able to analyse dynamic life cycle inventories that consider the temporal profiles of energy consumption, and the time -dependent temperature changes, while being also interoperable in terms of exchanging data with other available energy simulation engines, or even using real-time monitoring data from sensors, processing any data time granulation. Second, the paper evaluates, from a life cycle perspective, the impact of specific energy retrofitting measures, meeting the Passive House Standard, for the case of a multi-family residential building in Athens, Greece. The proposed energy-retrofitting scenario examines actions related to the deep retrofitting of the building envelope and the upgrade of the thermal components as well as to the incorporation of clean electricity generation based on renewable energy systems; all aiming to drastically reduce the environmental impact of the building, rendering it almost near zero energy. Through the planned infrastructure installations, the primary energy needs and CO2eq emissions were reduced by 91 % and by 95 % respectively, while for a building oper-ational lifespan of 25 years, savings up to 515 k euro compared to the baseline scenario, can be achieved.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] BIM-based approach for the integrated assessment of life cycle carbon emission intensity and life cycle costs
    Zhang, Yubing
    Jiang, Xiaoyan
    Cui, Caiyun
    Skitmore, Martin
    BUILDING AND ENVIRONMENT, 2022, 226
  • [22] Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach
    Resurreccion, Eleazer P.
    Colosi, Lisa M.
    White, Mark A.
    Clarens, Andres F.
    BIORESOURCE TECHNOLOGY, 2012, 126 : 298 - 306
  • [23] Review of life cycle assessment towards sustainable product development
    Chang, Danni
    Lee, C. K. M.
    Chen, Chun-Hsien
    JOURNAL OF CLEANER PRODUCTION, 2014, 83 : 48 - 60
  • [24] A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale
    Mastrucci, Alessio
    Marvuglia, Antonino
    Benetto, Enrico
    Leopold, Ulrich
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 126
  • [25] Life Cycle Assessment and Life Cycle Costing for assessing maritime transport: a comprehensive literature review
    Mondello, Giovanni
    Salomone, Roberta
    Saija, Giuseppe
    Lanuzza, Francesco
    Gulotta, Teresa Maria
    MARITIME POLICY & MANAGEMENT, 2023, 50 (02) : 198 - 218
  • [26] Integration of life cycle assessment and life cycle costing within a BIM-based environment
    Viscuso, Salvatore
    Monticelli, Carol
    Ahmadnia, Amirhossein
    Zanelli, Alessandra
    FRONTIERS IN SUSTAINABILITY, 2022, 3
  • [27] Life cycle costing as part of a life cycle sustainability assessment of products: methodology and case studies
    Bachmann, Till M.
    van der Kamp, Jonathan
    Bianchi, Marco
    Pihkola, Hanna
    del Oso, Mateo Saavedra
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2024, 29 (10): : 1863 - 1879
  • [28] Integrated life cycle assessment and thermodynamic simulation of a public building's envelope renovation: Conventional vs. Passivhaus proposal
    Sierra-Perez, Jorge
    Rodriguez-Soria, Beatriz
    Boschmonart-Rives, Jesus
    Gabarrell, Xavier
    APPLIED ENERGY, 2018, 212 : 1510 - 1521
  • [29] Dynamic life cycle costing based on lifetime prediction
    Herrmann, C.
    Kara, S.
    Thiede, S.
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING, 2011, 4 (03) : 224 - 235
  • [30] Artificial intelligence in building life cycle assessment
    Gachkar, Darya
    Gachkar, Sadaf
    Garcia Martinez, Antonio
    Angulo, Cecilio
    Aghlmand, Soheila
    Ahmadi, Javad
    ARCHITECTURAL SCIENCE REVIEW, 2024, 67 (06) : 484 - 502