Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study

被引:34
作者
Maito, Marcelo Adrian [1 ]
Santamaria-Garcia, Hernando [2 ,3 ,4 ]
Moguilner, Sebastian [1 ]
Possin, Katherine L. [2 ,5 ]
Godoy, Maria E. [1 ]
Avila-Funes, Jose Alberto [6 ,7 ,8 ]
Behrens, Maria, I [5 ,9 ,10 ]
Brusco, Ignacio L. [11 ,12 ]
Bruno, Martin A. [12 ,13 ]
Cardona, Juan F. [14 ]
Custodio, Nilton [15 ]
Garcia, Adolfo M. [1 ,2 ,16 ,17 ]
Javandel, Shireen [1 ,2 ,5 ]
Lopera, Francisco [18 ]
Matallana, Diana L. [19 ]
Miller, Bruce [2 ,5 ]
de Oliveira, Maira Okada [2 ,20 ,21 ]
Pina-Escudero, Stefanie D. [2 ,5 ]
Slachevsky, Andrea [22 ,23 ,24 ,25 ]
Ortiz, Ana L. Sosa [26 ]
Takada, Leonel T. [27 ]
Tagliazuchi, Enzo [28 ,29 ,30 ]
Valcour, Victor [2 ,5 ,31 ]
Yokoyama, Jennifer S. [2 ,5 ]
Ibanez, Agustin [12 ,28 ,32 ,33 ]
机构
[1] Univ San Andres, Cognit Neurosci Ctr CNC, Buenos Aires, DF, Argentina
[2] Univ Calif San Francisco, Global Brain Hlth Inst, San Francisco, CA 94143 USA
[3] Pontificia Univ Javeriana, Psychiat Dept, PhD Program Neurosci, Bogota, Colombia
[4] Hosp San Ignacio, Ctr Memory & Cognit Intellectus, Bogota, Colombia
[5] Univ Calif San Francisco, Dept Neurol, Memory & Aging Ctr, San Francisco, CA USA
[6] Inst Nacl Ciencias Med & Nutr Salvador Zubiran, Geriatr Dept, Mexico City, DF, Mexico
[7] Ctr Rech Inserm, U897, Brodeaux, France
[8] Univ Victor Segalen Bourdeaux 2, Bordeaux, France
[9] Univ Chile, Fac Med, Dept Neurociencia, Hosp Clin,Dept Neurol & Neurocirugi,Ctr Invest Cl, Santiago, Chile
[10] Univ Desarrollo, Dept Neurol & Psiquiatria, Clin Alemana, Santiago, Chile
[11] Univ Buenos Aires, Buenos Aires, DF, Argentina
[12] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[13] Univ Catolica Cuyo, Inst Ciencias Biomed, Buenos Aires, DF, Argentina
[14] Univ Valle, Cali, Colombia
[15] Peruvian Inst Neurosci, Unit Cognit Impairment & Dementia Prevent, Lima, Peru
[16] Natl Sci & Tech Res Council CONICET, Buenos Aires, DF, Argentina
[17] Univ Santiago Chile, Fac Humanidades, Dept Linguist & Literatura, Santiago, Chile
[18] Univ Antioquia, Neurosci Res Grp, Medellin, Colombia
[19] Pontificia Univ Javeriana, Aging Inst, PhD Program Neurosci, Bogota, Colombia
[20] Hosp Santa Marcelina, Sao Paulo, SP, Brazil
[21] Univ Sao Paulo, Sao Paulo, SP, Brazil
[22] Gerosci Ctr Brain Hlth & Metab, Neurol Dept, Santiago, Chile
[23] Univ Chile, Lab Neuropsychol & Clin Neurosci LANNEC, Physiopathol Program ICBM, East Neurol & Neurosci Dept,Fac Med,Hosp Salvador, Santiago, Chile
[24] Univ Chile, Fac Med, Santiago, Chile
[25] Univ Chile, Clin Alemana, Dept Med, Univ Desarrollo,Serv Neurol,Neuropsychiat & Memor, Santiago, Chile
[26] Inst Nacl Neurol & Neurocirug, Mexico City, DF, Mexico
[27] Univ Sao Paulo, Hosp Clin, Med Sch, Sao Paulo, Brazil
[28] Univ Adolfo Ibanez, Latin Amer Brain Hlth Inst BrainLat, Santiago, Chile
[29] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina
[30] Inst Fis Buenos Aires FIBA CONICET, Buenos Aires, DF, Argentina
[31] Univ Calif San Francisco, Dept Neurol, PhD Program Neurosci, Psychiat Dept, San Francisco, CA USA
[32] Univ San Andres, Buenos Aires, DF, Argentina
[33] Trinity Coll Dublin TCD, Global Brain Hlth Inst GBH, Dublin, Ireland
来源
LANCET REGIONAL HEALTH-AMERICAS | 2023年 / 17卷
关键词
Alzheimer?s Disease; Frontotemporal dementia; Underrepresented samples; Machine learning; FRONTAL SCREENING IFS; MINI-MENTAL-STATE; NEUROPSYCHIATRIC SYMPTOMS; DIAGNOSTIC-CRITERIA; BEHAVIORAL VARIANT; SOCIAL COGNITION; MACHINE; MILD; TOOL; INTERVENTION;
D O I
10.1016/j.lana.2022.100387
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper -middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Copyright (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:14
相关论文
共 63 条
  • [1] Dementia in Latin America: Paving the way toward a regional action plan
    Alfredo Parra, Mario
    Baez, Sandra
    Sedeno, Lucas
    Gonzalez Campo, Cecilia
    Santamaria-Garcia, Hernando
    Aprahamian, Ivan
    Bertolucci, Paulo H. F.
    Bustin, Julian
    Camargos Bicalho, Maria Aparecida
    Cano-Gutierrez, Carlos
    Caramelli, Paulo
    Chaves, Marcia L. F.
    Cogram, Patricia
    Beber, Barbara Costa
    Court, Felipe A.
    de Souza, Leonardo Cruz
    Custodio, Nilton
    Damian, Andres
    de la Cruz, Myriam
    Rodriguez, Roberta Diehl
    Dozzi Brucki, Sonia Maria
    Fajersztajn, Lais
    Farias, Gonzalo A.
    De Felice, Fernanda G.
    Ferrari, Raffaele
    de Oliveira, Fabricio Ferreira
    Ferreira, Sergio T.
    Ferretti, Ceres
    Figueredo Balthazar, Marcio Luiz
    Ferreira Frota, Norberto Anizio
    Fuentes, Patricio
    Garcia, Adolfo M.
    Garcia, Patricia J.
    de Gobbi Porto, Fabio Henrique
    Duque Penailillo, Lissette
    Willy Engler, Henry
    Maier, Irene
    Mata, Ignacio F.
    Gonzalez-Billault, Christian
    Lopez, Oscar L.
    Morelli, Laura
    Nitrini, Ricardo
    Quiroz, Yakeel T.
    Guerrero Barragan, Alejandra
    Huepe, David
    Pio, Fabricio Joao
    Suemoto, Claudia Kimie
    Kochhann, Renata
    Kochen, Silvia
    Kumfor, Fiona
    [J]. ALZHEIMERS & DEMENTIA, 2021, 17 (02) : 295 - 313
  • [2] POINTS OF SIGNIFICANCE Ensemble methods: bagging and random forests
    Altman, Naomi
    Krzywinski, Martin
    [J]. NATURE METHODS, 2017, 14 (10) : 933 - 934
  • [3] Meeting of minds: the medial frontal cortex and social cognition
    Amodio, DM
    Frith, CD
    [J]. NATURE REVIEWS NEUROSCIENCE, 2006, 7 (04) : 268 - 277
  • [4] Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI)
    Arevalo-Rodriguez, Ingrid
    Smailagic, Nadja
    Roque i Figuls, Marta
    Ciapponi, Agustin
    Sanchez-Perez, Erick
    Giannakou, Antri
    Pedraza, Olga L.
    Bonfill Cosp, Xavier
    Cullum, Sarah
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2015, (03):
  • [5] Baez S, 2017, CURR TOP BEHAV NEURO, V30, P379, DOI 10.1007/7854_2016_443
  • [6] Primary empathy deficits in frontotemporal dementia
    Baez, Sandra
    Manes, Facundo
    Huepe, David
    Torralva, Teresa
    Fiorentino, Natalia
    Richter, Fabian
    Huepe-Artigas, Daniela
    Ferrari, Jesica
    Montanes, Patricia
    Reyes, Pablo
    Matallana, Diana
    Vigliecca, Nora S.
    Decety, Jean
    Ibanez, Agustin
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2014, 6
  • [7] A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer's Disease
    Bari Antor, Morshedul
    Jamil, A. H. M. Shafayet
    Mamtaz, Maliha
    Monirujjaman Khan, Mohammad
    Aljahdali, Sultan
    Kaur, Manjit
    Singh, Parminder
    Masud, Mehedi
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [8] Optimizing Neuropsychological Assessments for Cognitive, Behavioral, and Functional Impairment Classification: A Machine Learning Study
    Battista, Petronilla
    Salvatore, Christian
    Castiglioni, Isabella
    [J]. BEHAVIOURAL NEUROLOGY, 2017, 2017
  • [9] Education plays a different role in Frontotemporal Dementia and Alzheimer's disease
    Borroni, Barbara
    Alberici, Antonella
    Agosti, Chiara
    Premi, Enrico
    Padovani, Alessandro
    [J]. INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2008, 23 (08) : 796 - 800
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32