Prediction Models to Estimate the Future Risk of Osteoarthritis in the General Population: A Systematic Review

被引:13
作者
Appleyard, Tom [1 ]
Thomas, Martin J. J. [1 ,2 ,3 ]
Antcliff, Deborah [1 ,4 ,5 ]
Peat, George [1 ,6 ]
机构
[1] Keele Univ, Keele, Staffs, England
[2] Midlands Partnership NHS Fdn Trust, Stafford, Staffs, England
[3] Haywood Hosp, Burslem, England
[4] Northern Care Alliance NHS Fdn Trust, Bury Care Org, Manchester, England
[5] Univ Leeds, Leeds, England
[6] Sheffield Hallam Univ, Sheffield, England
关键词
RADIOGRAPHIC KNEE OSTEOARTHRITIS; HIP; VALIDATION; ARTHROPLASTY; INDIVIDUALS; PERFORMANCE; OVERWEIGHT; BIOMARKERS; FEATURES; HAND;
D O I
10.1002/acr.25035
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveTo evaluate the performance and applicability of multivariable prediction models for osteoarthritis (OA). MethodsThis was a systematic review and narrative synthesis using 3 databases (EMBASE, PubMed, and Web of Science) from inception to December 2021. We included general population longitudinal studies reporting derivation, comparison, or validation of multivariable models to predict individual risk of OA incidence, defined by recognized clinical or imaging criteria. We excluded studies reporting prevalent OA and joint arthroplasty outcome. Paired reviewers independently performed article selection, data extraction, and risk-of-bias assessment. Model performance, calibration, and retained predictors were summarized. ResultsA total of 26 studies were included, reporting 31 final multivariable prediction models for incident knee (23), hip (4), hand (3) and any-site OA (1), with a median of 121.5 (range 27-12,803) outcome events, a median prediction horizon of 8 years (range 2-41), and a median of 6 predictors (range 3-24). Age, body mass index, previous injury, and occupational exposures were among the most commonly included predictors. Model discrimination after validation was generally acceptable to excellent (area under the curve = 0.70-0.85). Either internal or external validation processes were used in most models, although the risk of bias was often judged to be high with limited applicability to mass application in diverse populations. ConclusionDespite growing interest in multivariable prediction models for incident OA, focus remains predominantly on the knee, with reliance on data from a small pool of appropriate cohort data sets, and concerns over general population applicability.
引用
收藏
页码:1481 / 1493
页数:13
相关论文
共 66 条
[11]   Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence [J].
Collins, Gary S. ;
Dhiman, Paula ;
Andaur Navarro, Constanza L. ;
Ma, Ji ;
Hooft, Lotty ;
Reitsma, Johannes B. ;
Logullo, Patricia ;
Beam, Andrew L. ;
Peng, Lily ;
Van Calster, Ben ;
van Smeden, Maarten ;
Riley, Richard D. ;
Moons, Karel G. M. .
BMJ OPEN, 2021, 11 (07)
[12]   The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice [J].
Croft, Peter ;
Altman, Douglas G. ;
Deeks, Jonathan J. ;
Dunn, Kate M. ;
Hay, Alastair D. ;
Hemingway, Harry ;
LeResche, Linda ;
Peat, George ;
Perel, Pablo ;
Petersen, Steffen E. ;
Riley, Richard D. ;
Roberts, Ian ;
Sharpe, Michael ;
Stevens, Richard J. ;
Van Der Windt, Danielle A. ;
Von Korff, Michael ;
Timmis, Adam .
BMC MEDICINE, 2015, 13
[13]   Future projections of total hip and knee arthroplasty in the UK: results from the UK Clinical Practice Research Datalink [J].
Culliford, D. ;
Maskell, J. ;
Judge, A. ;
Cooper, C. ;
Prieto-Alhambra, D. ;
Arden, N. K. .
OSTEOARTHRITIS AND CARTILAGE, 2015, 23 (04) :594-600
[14]   Prediction models for cardiovascular disease risk in the general population: systematic review [J].
Damen, Johanna A. A. G. ;
Hooft, Lotty ;
Schuit, Ewoud ;
Debray, Thomas P. A. ;
Collins, Gary S. ;
Tzoulaki, Ioanna ;
Lassale, Camille M. ;
Siontis, George C. M. ;
Chiocchia, Virginia ;
Roberts, Corran ;
Schlussel, Michael Maia ;
Gerry, Stephen ;
Black, James A. ;
Heus, Pauline ;
van der Schouw, Yvonne T. ;
Peelen, Linda M. ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2016, 353
[15]   World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions [J].
Di Angelantonio, Emanuele ;
Kaptoge, Stephen ;
Pennells, Lisa ;
De Bacquer, Dirk ;
Cooney, Marie Therese ;
Kavousi, Maryam ;
Stevens, Gretchen ;
Riley, Leanne ;
Savin, Stefan ;
Altay, Servet ;
Amouyel, Philippe ;
Assmann, Gerd ;
Bell, Steven ;
Ben-Shlomo, Yoav ;
Berkman, Lisa ;
Beulens, Joline W. ;
Bjorkelund, Cecilia ;
Blaha, Michael J. ;
Blazer, Dan G. ;
Bolton, Thomas ;
Bonita, Ruth ;
Brenner, Beaglehole Hermann ;
Brunner, Eric J. ;
Casiglia, Edoardo ;
Chamnan, Parinya ;
Choi, Yeun-Hyang ;
Chowdhury, Rajiv ;
Coady, Sean ;
Crespo, Carlos J. ;
Cushman, Mary ;
Dagenais, Gilles R. ;
D'Agostino, Ralph B. ;
Daimon, Makoto ;
Davidson, Karina W. ;
Engstrom, Gunnar ;
Fang, Xianghua ;
Ford, Ian ;
Gallacher, John ;
Gansevoort, Ron T. ;
Gaziano, Thomas Andrew ;
Giampaoli, Simona ;
Grandits, Greg ;
Grimsgaard, Sameline ;
Grobbee, Diederick E. ;
Gudnason, Vilmundur ;
Guo, Qi ;
Humphries, Steve ;
Iso, Hiroyasu ;
Jukema, J. Wouter ;
Kauhanen, Jussi .
LANCET GLOBAL HEALTH, 2019, 7 (10) :E1332-E1345
[16]   Risk factors can classify individuals who develop accelerated knee osteoarthritis: Data from the osteoarthritis initiative [J].
Driban, Jeffrey B. ;
McAlindon, Timothy E. ;
Amin, Mamta ;
Price, Lori L. ;
Eaton, Charles B. ;
Davis, Julie E. ;
Lu, Bing ;
Lo, Grace H. ;
Duryea, Jeffrey ;
Barbe, Mary F. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2018, 36 (03) :876-880
[17]   Establishing outcome measures in early knee osteoarthritis [J].
Emery, Carolyn A. ;
Whittaker, Jackie L. ;
Mahmoudian, Armaghan ;
Lohmander, L. Stefan ;
Roos, Ewa M. ;
Bennell, Kim L. ;
Toomey, Clodagh M. ;
Reimer, Raylene A. ;
Thompson, Dylan ;
Ronsky, Janet L. ;
Kuntze, Gregor ;
Lloyd, David G. ;
Andriacchi, Thomas ;
Englund, Martin ;
Kraus, Virginia B. ;
Losina, Elena ;
Bierma-Zeinstra, Sita ;
Runhaar, Jos ;
Peat, George ;
Luyten, Frank P. ;
Snyder-Mackler, Lynn ;
Risberg, May Arna ;
Mobasheri, Ali ;
Guermazi, Ali ;
Hunter, David J. ;
Arden, Nigel K. .
NATURE REVIEWS RHEUMATOLOGY, 2019, 15 (07) :438-448
[18]   Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach [J].
Fernandes, G. S. ;
Bhattacharya, A. ;
McWilliams, D. F. ;
Ingham, S. L. ;
Doherty, M. ;
Zhang, W. .
ARTHRITIS RESEARCH & THERAPY, 2017, 19
[19]   Predicting Incident Radiographic Knee Osteoarthritis in Middle-Aged Women Within Four Years: The Importance of Knee-Level Prognostic Factors [J].
Garriga, Cesar ;
Sanchez-Santos, Maria T. ;
Judge, Andrew ;
Hart, Deborah ;
Spector, Tim ;
Cooper, Cyrus ;
Arden, Nigel K. .
ARTHRITIS CARE & RESEARCH, 2020, 72 (01) :88-97
[20]   Search Filters for Finding Prognostic and Diagnostic Prediction Studies in Medline to Enhance Systematic Reviews [J].
Geersing, Geert-Jan ;
Bouwmeester, Walter ;
Zuithoff, Peter ;
Spijker, Rene ;
Leeflang, Mariska ;
Moons, Karel .
PLOS ONE, 2012, 7 (02)